Skip to main content

Diabetic Eye Disease

  • Chapter
  • First Online:
Diabetes and Aging-related Complications

Abstract

More than 50 million people are suffering from blindness worldwide. In addition, the number of blinded patients is increasing. Cataract, diabetic retinopathy, age-related macular degeneration, and corneal disorders are major causes of blindness. Advanced glycation end products (AGEs) have a central role in the development of the above ocular diseases. Understanding the mechanism of AGE formation will be a clue to the prevention and treatment of major causes of blindness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Global initiative for the elimination of avoidable blindness. An informal cunsultation. WHO/PBL/9761. Geneva: WHO; 1997.

    Google Scholar 

  2. Ezepue UF. Magnitude and causes of blindness and low vision in Anambra State of Nigeria (results of 1992 point prevalence survey). Public Health. 1997;111:305–9.

    Article  CAS  PubMed  Google Scholar 

  3. Klein R, Klein BE, Jensen SC, Moss SE, Cruickshanks KJ. The relation of socioeconomic factors to age-related cataract, maculopathy, and impaired vision. The Beaver Dam Eye Study. Ophthalmology. 1994;101:1969–79.

    Article  CAS  PubMed  Google Scholar 

  4. Leske MC, Connell AM, Wu SY, Hyman L, Schachat A. Prevalence of lens opacities in the Barbados Eye Study. Arch Ophthalmol. 1997;115:105–11.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell P, Cumming RG, Attebo K, Panchapakesan J. Prevalence of cataract in Australia: the Blue Mountains eye study. Ophthalmology. 1997;104:581–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997;324(Pt 2):565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dyer DG, Blackledge JA, Katz BM, Hull CJ, Adkisson HD, Thorpe SR, et al. The Maillard reaction in vivo. Z Ernahrungswiss. 1991;30:29–45.

    Article  CAS  PubMed  Google Scholar 

  8. Monnier VM, Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981;211:491–3.

    Article  CAS  PubMed  Google Scholar 

  9. Attebo K, Mitchell P, Smith W. Visual acuity and the causes of visual loss in Australia. The Blue Mountains Eye Study. Ophthalmology. 1996;103:357–64.

    Article  CAS  PubMed  Google Scholar 

  10. Munoz B, West SK, Rubin GS, Schein OD, Quigley HA, Bressler SB, et al. Causes of blindness and visual impairment in a population of older Americans: The Salisbury Eye Evaluation Study. Arch Ophthalmol. 2000;118:819–25.

    Article  CAS  PubMed  Google Scholar 

  11. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002;99:14682–7. doi:10.1073/pnas.222551899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, et al. Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol. 1998;116:1629–32.

    Article  CAS  PubMed  Google Scholar 

  13. Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta. 1790;2009:1109–16. doi:10.1016/j.bbagen.2009.04.016.

    Google Scholar 

  14. Howes KA, Liu Y, Dunaief JL, Milam A, Frederick JM, Marks A, et al. Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004;45:3713–20. doi:10.1167/iovs.04-0404.

    Article  PubMed  Google Scholar 

  15. Park SW, Kim JH, Park SM, Moon M, Lee KH, Park KH, et al. RAGE mediated intracellular Abeta uptake contributes to the breakdown of tight junction in retinal pigment epithelium. Oncotarget. 2015;6:35263–73. doi:10.18632/oncotarget.5894.

    PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. Global report on diabetes. Geneva: WHO; 2016.

    Google Scholar 

  17. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102:527–32.

    Article  CAS  PubMed  Google Scholar 

  18. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984;102:520–6.

    Article  CAS  PubMed  Google Scholar 

  19. West SK, Klein R, Rodriguez J, Munoz B, Broman AT, Sanchez R, et al. Diabetes and diabetic retinopathy in a Mexican-American population: Proyecto VER. Diabetes Care. 2001;24:1204–9.

    Article  CAS  PubMed  Google Scholar 

  20. Barile GR, Pachydaki SI, Tari SR, Lee SE, Donmoyer CM, Ma W, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005;46:2916–24. doi:10.1167/iovs.04-1409.

    Article  PubMed  Google Scholar 

  21. Chen M, Curtis TM, Stitt AW. Advanced glycation end products and diabetic retinopathy. Curr Med Chem. 2013;20:3234–40.

    Article  CAS  PubMed  Google Scholar 

  22. Monnier VM, Sun W, Sell DR, Fan X, Nemet I, Genuth S. Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications. Clin Chem Lab Med. 2014;52:21–32. doi:10.1515/cclm-2013-0174.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma Y, Saxena S, Mishra A, Saxena A, Natu SM. Advanced glycation end products and diabetic retinopathy. J Ocul Biol Dis Infor. 2012;5:63–9. doi:10.1007/s12177-013-9104-7.

    Article  PubMed  Google Scholar 

  24. Kaji Y, Usui T, Ishida S, Yamashiro K, Moore TC, Moore J, et al. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci. 2007;48:858–65. doi:10.1167/iovs.06-0495.

    Article  PubMed  Google Scholar 

  25. Moore TC, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, et al. The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci. 2003;44:4457–64.

    Article  PubMed  Google Scholar 

  26. Jacot JL, Hosotani H, Glover JP, Lois N, Robison WG Jr. Diabetic-like corneal sensitivity loss in galactose-fed rats ameliorated with aldose reductase inhibitors. J Ocul Pharmacol Ther. 1998;14:169–80. doi:10.1089/jop.1998.14.169.

    Article  CAS  PubMed  Google Scholar 

  27. Kador PF, Wyman M, Oates PJ. Aldose reductase, ocular diabetic complications and the development of topical Kinostat((R)). Prog Retin Eye Res. 2016;54:1–29. doi:10.1016/j.preteyeres.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  28. Ohashi Y, Matsuda M, Hosotani H, Tano Y, Ishimoto I, Fukuda M, et al. Aldose reductase inhibitor (CT-112) eyedrops for diabetic corneal epitheliopathy. Am J Ophthalmol. 1988;105:233–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chikamoto N, Chikama T, Yamada N, Nishida T, Ishimitsu T, Kamiya A. Efficacy of substance P and insulin-like growth factor-1 peptides for preventing postsurgical superficial punctate keratopathy in diabetic patients. Jpn J Ophthalmol. 2009;53:464–9. doi:10.1007/s10384-009-0693-4.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura M, Kawahara M, Morishige N, Chikama T, Nakata K, Nishida T. Promotion of corneal epithelial wound healing in diabetic rats by the combination of a substance P-derived peptide (FGLM-NH2) and insulin-like growth factor-1. Diabetologia. 2003;46:839–42. doi:10.1007/s00125-003-1105-9.

    Article  CAS  PubMed  Google Scholar 

  31. Kaji Y, Usui T, Oshika T, Matsubara M, Yamashita H, Araie M, et al. Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci. 2000;41:362–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Kaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaji, Y. (2018). Diabetic Eye Disease. In: Yamagishi, Si. (eds) Diabetes and Aging-related Complications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4376-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4376-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4375-8

  • Online ISBN: 978-981-10-4376-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics