Skip to main content

Diabetic Kidney Disease

  • Chapter
  • First Online:
Book cover Diabetes and Aging-related Complications

Abstract

Renal senescence is accompanied by a gradual decrease in its function. Although it rarely causes clinical problems per se, superimposition of various diseases, such as diabetes, may accelerate this functional decline. Recent research has revealed some of the complex mechanisms of how diabetes promotes the aging process in the kidney, including the pathogenic roles of hemodynamic changes, tubulointerstitial hypoxia, oxidative stress, advanced glycation end-products, and impaired autophagy. Diabetes also modulates aging-related signaling pathways, such as sirtuins and mammalian target of rapamycin. Current therapeutic strategy for diabetic kidney disease consists of glycemic control and antihypertensive treatment with renin-angiotensin system inhibitors. However, they fail to fully prevent the progression of diabetic kidney disease, raising an urgent need for novel therapeutic methods. Some pharmacological agents are being developed based on the knowledge of hemodynamic and molecular basis of diabetes- and aging-related kidney function decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis. 2010;17:302–7. doi:10.1053/j.ackd.2010.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol. 2010;6:667–78. doi:10.1038/nrneph.2010.124.

    Article  CAS  PubMed  Google Scholar 

  3. Kasiske BL. Relationship between vascular disease and age-associated changes in the human kidney. Kidney Int. 1987;31:1153–9.

    Article  CAS  PubMed  Google Scholar 

  4. Takazakura E, Sawabu N, Handa A, Shinoda A, Takeuchi J. Intrarenal vascular changes with age and disease. Kidney Int. 1972;2:224–30.

    Article  CAS  PubMed  Google Scholar 

  5. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17–25.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka T, Kato H, Kojima I, Ohse T, Son D, Kawakami T, et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci. 2006;61:795–805.

    Article  PubMed  Google Scholar 

  7. Olson JL, Laszik ZG. Diabetic nephropathy. In: Jennette JC, Olson JL, Schwartz MM, Silva FG, editors. Heptinstall’s pathology of the kidney. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  8. Vallon V, Komers R. Pathophysiology of the diabetic kidney. Compr Physiol. 2011;1:1175–232. doi:10.1002/cphy.c100049.

    PubMed  Google Scholar 

  9. Panth N, Paudel KR, Parajuli K. Reactive oxygen species: a key hall mark of cardiovascular disease. Adv Med. 2016. doi: 10.1155/2016/9152732.

  10. Coughlan MT, Sharma K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int. 2016;90:272–9. doi:10.1016/j.kint.2016.02.043.

    Article  CAS  PubMed  Google Scholar 

  11. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, et al. AMPK dysregulation of superoxide and mitochondrial function. J Clin Invest. 2013;123:4888–99. doi:10.1172/JCI66218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–93. doi:10.1016/j.cmet.2007.08.011.

    Article  CAS  PubMed  Google Scholar 

  13. Semba RD, Ferrucci L, Fink JC, Sun K, Beck J, Dalal M, et al. Advanced glycation end products and their circulating receptors and level of kidney function in older community-dwelling women. Am J Kidney Dis. 2009;53:51–8. doi:10.1053/j.ajkd.2008.06.018.

    Article  PubMed  Google Scholar 

  14. Ikeda Y, Inagi R, Miyata T, Nagai R, Arai M, Miyashita M, et al. Glyoxalase I retards renal senescence. Am J Pathol. 2011;179:2810–21. doi:10.1016/j.ajpath.2011.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jo-Watanabe A, Ohse T, Nishimatsu H, Takahashi M, Ikeda Y, Wada T, et al. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation. Aging Cell. 2014;13:519–28. doi:10.1111/acel.12204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kume S, Koya D. Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J. 2015;39:451–60. doi:10.4093/dmj.2015.39.6.451.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, et al. Autophagy attenuates diabetic glomerular damage through protection of Hyperglycemia-induced podocyte injury. PLoS One. 2013;8:360546.

    Google Scholar 

  19. Tagawa A, Yasuda M, Kume S, Yamahana K, Nakazawa J, Chin-Kanasaki M, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65:755–67. doi:10.2337/db15-0473.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura T, Takabatake Y, Takahashi A, Kaimori J, Matsui I, Namba T, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011;22:902–13. doi:10.1681/ASN.2010070705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, et al. Autophagy guards against cisplatin-induced acute kidney injury. J Am Pathol. 2012;180:517–25. doi:10.1016/j.ajpath.2011.11.001.

    Article  CAS  Google Scholar 

  22. Yamahara K, Kume S, Koya D, Yanaka Y, Morita Y, Chin-Kanasaki M, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol. 2013;24:1769–81. doi:10.1681/ASN.2012111080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120:1084–96. doi:10.1172/JCI39492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bitzer M, Wiggins J. Aging biology in the kidney. Adv Chronic Kidney Dis. 2016;23:12–8. doi:10.1053/j.ackd.2015.11.005.

    Article  PubMed  Google Scholar 

  25. Fantus D, Rogers NM, Grahammer F, Huber TB, Thomson AW. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol. 2016;12:587–609. doi:10.1038/nrneph.2016.108.

    Article  CAS  PubMed  Google Scholar 

  26. Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol. 2015;224:R15–30. doi:10.1530/JOE-14-0437.

    Article  CAS  PubMed  Google Scholar 

  27. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181–96. doi:10.1172/JCI44771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2013;124:153–64. doi:10.1042/CS20120190.

    Article  CAS  PubMed  Google Scholar 

  29. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120:1043–55. doi:10.1172/JCI41376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kitada M, Koya D. SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab J. 2013;37:315–25. doi:10.4093/dmj.2013.37.5.315.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suzuki K, Han GD, Miyauchi N, Hashimoto T, Nakatsue T, Fujioka Y, et al. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am J Pathol. 2007;170:1841–53. doi:10.2353/ajpath.2007.060484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34. doi:10.1056/NEJMoa1515920.

    Article  CAS  PubMed  Google Scholar 

  33. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62. doi:10.1111/dom.12127.

    Article  CAS  PubMed  Google Scholar 

  34. Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complicat. 2014;28:604–11. doi:10.1016/j..jdiacomp.2014.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol. 2016;12:157–68. doi:10.1038/nrneph.2015.193.

    Article  CAS  PubMed  Google Scholar 

  36. Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, et al. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol. 2015;26:328–38. doi:10.1681/ASN.2013090990.

    Article  PubMed  Google Scholar 

  37. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20. doi:10.1172/JCI30487.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schietke RE, Hackenbeck T, Tran M, Günther R, Klanke B, Warnecke CL, et al. Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts. PLoS One. 2012;7:e31034. doi:10.1371/journal.pone.0031034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyata T, Suzuki N, van Ypersele de Strihou C. Diabetic nephropathy: are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013;84:693–702. doi:10.1038/ki.2013.74.

    Article  CAS  PubMed  Google Scholar 

  40. Pergola PE, Krauth M, Huff JW, Ferguson DA, Ruiz S, Meyer C, Warnock DG. Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b-4 CKD. Am J Nephrol. 2011;33:469–76. doi:10.1159/000327599.

    Article  CAS  PubMed  Google Scholar 

  41. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503. doi:10.1056/NEJMoa1306033.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chin MP, Wrolstad D, Barkris G, Chertow GM, de Zeeuw D, Goldsberry A, et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail. 2014;20:953–8. doi:10.1016/j.cardfail.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuhiro Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sugahara, M., Tanaka, T., Inagi, R., Nangaku, M. (2018). Diabetic Kidney Disease. In: Yamagishi, Si. (eds) Diabetes and Aging-related Complications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4376-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4376-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4375-8

  • Online ISBN: 978-981-10-4376-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics