Skip to main content

Treatment-Resistant Depression: Understandings on the Neurobiological Etiology that Lead to Novel Pharmacological Treatment Options

  • Chapter
  • First Online:
Treatment Resistance in Psychiatry

Abstract

Treatment-resistant depression (TRD) places a great burden not only to patients but society as a whole. A deep understanding of the neurobiological etiology of TRD will aid us to develop effective treatment strategies for TRD. In this chapter, we will discuss the recent findings on neurobiological mechanisms underlying TRD and corresponding novel pharmacological treatment strategies. Genetics and interactions with environmental factors; alterations in neural substrates, neuroinflammatory conditions, and glutamatergic neurotransmission; and glial cell pathology have been discussed. Anti-inflammatory drugs and ketamine have been suggested as novel treatment agents for TRD. Future studies that investigate the long-term efficacies and safety of such new treatment options in TRD are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry. 2008;69(Suppl E1):4–7.

    PubMed  Google Scholar 

  2. Garfield S, Francis SA, Smith FJ. Building concordant relationships with patients starting antidepressant medication. Patient Educ Couns. 2004;55(2):241–6.

    Article  Google Scholar 

  3. Gaynes BN, Rush AJ, Trivedi MH, Wisniewski SR, Spencer D, Fava M. The STAR*D study: treating depression in the real world. Cleve Clin J Med. 2008;75(1):57–66.

    Article  Google Scholar 

  4. Wijeratne C, Sachdev P. Treatment-resistant depression: critique of current approaches. Aust N Z J Psychiatry. 2008;42(9):751–62.

    Article  Google Scholar 

  5. Bonvicini C, Minelli A, Scassellati C, Bortolomasi M, Segala M, Sartori R, et al. Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(6):934–9.

    Article  CAS  Google Scholar 

  6. Anttila S, Viikki M, Huuhka K, Huuhka M, Huhtala H, Rontu R, et al. TPH2 polymorphisms may modify clinical picture in treatment-resistant depression. Neurosci Lett. 2009;464(1):43–6.

    Article  CAS  Google Scholar 

  7. Houston JP, Lau K, Aris V, Liu W, Fijal BA, Heinloth AN, et al. Association of common variations in the norepinephrine transporter gene with response to olanzapine-fluoxetine combination versus continued-fluoxetine treatment in patients with treatment-resistant depression: a candidate gene analysis. J Clin Psychiatry. 2012;73(6):878–85.

    Article  CAS  Google Scholar 

  8. Lin Z, He H, Zhang C, Wang Z, Jiang M, Li Q, et al. Influence of Val108/158Met COMT gene polymorphism on the efficacy of modified electroconvulsive therapy in patients with treatment resistant depression. Cell Biochem Biophys. 2015;71(3):1387–93.

    Article  CAS  Google Scholar 

  9. Liu RT, Alloy LB. Stress generation in depression: a systematic review of the empirical literature and recommendations for future study. Clin Psychol Rev. 2010;30(5):582–93.

    Article  Google Scholar 

  10. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.

    Article  Google Scholar 

  11. Na KS, Won E, Kang J, Chang HS, Yoon HK, Tae WS, et al. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep. 2016;6:21089.

    Article  CAS  Google Scholar 

  12. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry J Ment Sci. 1998;172:527–32.

    Article  CAS  Google Scholar 

  13. Maller JJ, Daskalakis ZJ, Thomson RH, Daigle M, Barr MS, Fitzgerald PB. Hippocampal volumetrics in treatment-resistant depression and schizophrenia: the devil’s in de-tail. Hippocampus. 2012;22(1):9–16.

    Article  Google Scholar 

  14. Furtado CP, Maller JJ, Fitzgerald PB. A magnetic resonance imaging study of the entorhinal cortex in treatment-resistant depression. Psychiatry Res. 2008;163(2):133–42.

    Article  Google Scholar 

  15. Phillips JL, Batten LA, Tremblay P, Aldosary F, Blier P. A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. Int J Neuropsychopharmacol. 2015;18(8):1–9.

    Article  Google Scholar 

  16. de Kwaasteniet BP, Rive MM, Ruhe HG, Schene AH, Veltman DJ, Fellinger L, et al. Decreased resting-state connectivity between neurocognitive networks in treatment resistant depression. Front Psych. 2015;6:28.

    Google Scholar 

  17. Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;44:51–7.

    Article  Google Scholar 

  18. Ma C, Ding J, Li J, Guo W, Long Z, Liu F, et al. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression. PLoS One. 2012;7(9):e45263.

    Article  CAS  Google Scholar 

  19. Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, Huang XQ, et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2011;32(8):1290–9.

    Article  Google Scholar 

  20. Paillere Martinot ML, Martinot JL, Ringuenet D, Galinowski A, Gallarda T, Bellivier F, et al. Baseline brain metabolism in resistant depression and response to transcranial magnetic stimulation. Neuropsychopharmacology. 2011;36(13):2710–9.

    Article  Google Scholar 

  21. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  Google Scholar 

  22. Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:277–84.

    Article  CAS  Google Scholar 

  23. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41.

    Article  CAS  Google Scholar 

  24. Nelson LH, Lenz KM. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behav Brain Res. 2017;316:279–93.

    Article  Google Scholar 

  25. Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry. 2014;76(7):575–84.

    Article  CAS  Google Scholar 

  26. Noda M. Dysfunction of glutamate receptors in microglia may cause neurodegeneration. Curr Alzheimer Res. 2016;13(4):381–6.

    Article  CAS  Google Scholar 

  27. Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology. 2017;76:197–205.

    Article  CAS  Google Scholar 

  28. Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75(5):321–41.

    Article  CAS  Google Scholar 

  29. Ernst A, Frisen J. Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 2015;13(1):e1002045.

    Article  Google Scholar 

  30. Vadodaria KC, Gage FH. SnapShot: adult hippocampal neurogenesis. Cell. 2014;156(5):1114–e1.

    Article  CAS  Google Scholar 

  31. Cameron HA, Glover LR. Adult neurogenesis: beyond learning and memory. Annu Rev Psychol. 2015;66:53–81.

    Article  Google Scholar 

  32. Odaka H, Adachi N, Numakawa T. Impact of glucocorticoid on neurogenesis. Neural Regen Res. 2017;12(7):1028–35.

    Article  Google Scholar 

  33. Vollmayr B, Mahlstedt MM, Henn FA. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci. 2007;257(5):300–3.

    Article  Google Scholar 

  34. Parnet P, Kelley KW, Bluthe RM, Dantzer R. Expression and regulation of interleukin-1 receptors in the brain. Role in cytokines-induced sickness behavior. J Neuroimmunol. 2002;125(1–2):5–14.

    Article  CAS  Google Scholar 

  35. Arai K, Matsuki N, Ikegaya Y, Nishiyama N. Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol. 2001;87(3):195–201.

    Article  CAS  Google Scholar 

  36. Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A. 2008;105(2):751–6.

    Article  CAS  Google Scholar 

  37. Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O'Banion MK. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun. 2012;26(2):292–300.

    Article  CAS  Google Scholar 

  38. Kaneko N, Kudo K, Mabuchi T, Takemoto K, Fujimaki K, Wati H, et al. Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology. 2006;31(12):2619–26.

    Article  CAS  Google Scholar 

  39. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15:797–819.

    Article  CAS  Google Scholar 

  40. Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res. 2006;1075(1):26–35.

    Article  CAS  Google Scholar 

  41. Watanabe Y, Hashimoto S, Kakita A, Takahashi H, Ko J, Mizuno M, et al. Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats. Neurosci Res. 2004;48(3):345–53.

    Article  CAS  Google Scholar 

  42. Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci Off J Soc Neurosci. 2005;25(36):8217–28.

    Article  CAS  Google Scholar 

  43. Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, et al. Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation. 2011;8:121.

    Article  CAS  Google Scholar 

  44. Yang L, Lindholm K, Konishi Y, Li R, Shen Y. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci Off J Soc Neurosci. 2002;22(8):3025–32.

    Article  CAS  Google Scholar 

  45. Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem. 2004;279(31):32869–81.

    Article  CAS  Google Scholar 

  46. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood. 2001;98(6):1782–91.

    Article  CAS  Google Scholar 

  47. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci Off J Soc Neurosci. 2006;26(38):9703–12.

    Article  CAS  Google Scholar 

  48. Chen J, Jacobs-Helber SM, Barber DL, Sawyer ST. Erythropoietin-dependent autocrine secretion of tumor necrosis factor-alpha in hematopoietic cells modulates proliferation via MAP kinase--ERK-1/2 and does not require tyrosine docking sites in the EPO receptor. Exp Cell Res. 2004;298(1):155–66.

    Article  CAS  Google Scholar 

  49. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.

    Article  CAS  Google Scholar 

  50. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295(5563):2282–5.

    Article  CAS  Google Scholar 

  51. Serafini G, Howland RH, Rovedi F, Girardi P, Amore M. The role of ketamine in treatment-resistant depression: a systematic review. Curr Neuropharmacol. 2014;12(5):444–61.

    Article  CAS  Google Scholar 

  52. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58(3):293–7.

    Article  CAS  Google Scholar 

  53. Balazs R. Trophic effect of glutamate. Curr Top Med Chem. 2006;6(10):961–8.

    Article  CAS  Google Scholar 

  54. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992;258(5082):597–603.

    Article  CAS  Google Scholar 

  55. Lapidus KA, Soleimani L, Murrough JW. Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat. 2013;9:1101–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 1989;12(7):265–70.

    Article  CAS  Google Scholar 

  57. Zhou X, Chen Z, Yun W, Ren J, Li C, Wang H. Extrasynaptic NMDA receptor in excitotoxicity: function revisited. Neuroscientist: Rev J Bringing Neurobiol Neurol Psychiatry. 2015;21(4):337–44.

    Article  CAS  Google Scholar 

  58. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11(10):682–96.

    Article  CAS  Google Scholar 

  59. Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22–37.

    Article  Google Scholar 

  60. Zheng K, Scimemi A, Rusakov DA. Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J. 2008;95(10):4584–96.

    Article  CAS  Google Scholar 

  61. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol. 2006;572(Pt 3):789–98.

    Article  CAS  Google Scholar 

  62. Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, et al. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci Off J Soc Neurosci. 2012;32(12):3992–4003.

    Article  CAS  Google Scholar 

  63. Molokanova E, Akhtar MW, Sanz-Blasco S, Tu S, Pina-Crespo JC, McKercher SR, et al. Differential effects of synaptic and extrasynaptic NMDA receptors on Abeta-induced nitric oxide production in cerebrocortical neurons. J Neurosci Off J Soc Neurosci. 2014;34(14):5023–8.

    Article  Google Scholar 

  64. Doherty AJ, Palmer MJ, Bortolotto ZA, Hargreaves A, Kingston AE, Ornstein PL, et al. A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br J Pharmacol. 2000;131(2):239–44.

    Article  CAS  Google Scholar 

  65. Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci Off J Soc Neurosci. 2000;20(21):7871–9.

    Article  CAS  Google Scholar 

  66. Palucha-Poniewiera A, Wieronska JM, Branski P, Burnat G, Chruscicka B, Pilc A. Is the mGlu5 receptor a possible target for new antidepressant drugs? Pharmacol Rep : PR. 2013;65(6):1506–11.

    Article  CAS  Google Scholar 

  67. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Rev Neurosci. 1992;3(3):217–31.

    Article  CAS  Google Scholar 

  68. Wright RA, Johnson BG, Zhang C, Salhoff C, Kingston AE, Calligaro DO, et al. CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [(3)H]LY459477 autoradiography. Neuropharmacology. 2013;66:89–98.

    Article  CAS  Google Scholar 

  69. Williams CJ, Dexter DT. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem. 2014;129(1):4–20.

    Article  CAS  Google Scholar 

  70. Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–9.

    Article  CAS  Google Scholar 

  71. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994;369(6483):744–7.

    Article  CAS  Google Scholar 

  72. Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry. 2013;73(12):1133–41.

    Article  CAS  Google Scholar 

  73. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.

    Article  CAS  Google Scholar 

  74. Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci Off J Soc Neurosci. 2015;35(12):4942–52.

    Article  CAS  Google Scholar 

  75. Blakely PK, BK K-DM, Tyler KL, Irani DN. Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol. 2009;68(10):1061–72.

    Article  CAS  Google Scholar 

  76. Zhong C, Luo Q, Jiang J. Blockade of N-acetylaspartylglutamate peptidases: a novel protective strategy for brain injuries and neurological disorders. Int J Neurosci. 2014;124(12):867–73.

    Article  CAS  Google Scholar 

  77. Passani L, Elkabes S, Coyle JT. Evidence for the presence of N-acetylaspartylglutamate in cultured oligodendrocytes and LPS activated microglia. Brain Res. 1998;794(1):143–5.

    Article  CAS  Google Scholar 

  78. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, et al. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One. 2011;6(1):e15973.

    Article  CAS  Google Scholar 

  79. Wang X, Wu H, Miller AH. Interleukin 1alpha (IL-1alpha) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry. 2004;9(1):65–75.

    Article  CAS  Google Scholar 

  80. Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29(1):2–11.

    Article  CAS  Google Scholar 

  81. Hashioka S, McGeer PL, Monji A, Kanba S. Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer’s disease. Cent Nerv Syst Agents Med Chem. 2009;9(1):12–9.

    Article  CAS  Google Scholar 

  82. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.

    Article  CAS  Google Scholar 

  83. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.

    Article  CAS  Google Scholar 

  84. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord. 2012;141(2–3):308–14.

    Article  CAS  Google Scholar 

  85. Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety. 2009;26(7):607–11.

    Article  CAS  Google Scholar 

  86. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367(9504):29–35.

    Article  CAS  Google Scholar 

  87. Menter A, Augustin M, Signorovitch J, Yu AP, Wu EQ, Gupta SR, et al. The effect of adalimumab on reducing depression symptoms in patients with moderate to severe psoriasis: a randomized clinical trial. J Am Acad Dermatol. 2010;62(5):812–8.

    Article  CAS  Google Scholar 

  88. Ertenli I, Ozer S, Kiraz S, Apras SB, Akdogan A, Karadag O, et al. Infliximab, a TNF-alpha antagonist treatment in patients with ankylosing spondylitis: the impact on depression, anxiety and quality of life level. Rheumatol Int. 2012;32(2):323–30.

    Article  CAS  Google Scholar 

  89. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21(4):227–31.

    Article  Google Scholar 

  90. Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;37(2):222–6.

    Article  CAS  Google Scholar 

  91. Ajmone-Cat MA, Cacci E, Minghetti L. Non steroidal anti-inflammatory drugs and neurogenesis in the adult mammalian brain. Curr Pharm Des. 2008;14(14):1435–42.

    Article  CAS  Google Scholar 

  92. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.

    Article  CAS  Google Scholar 

  93. Uppal A, Singh A, Gahtori P, Ghosh SK, Ahmad MZ. Antidepressants: current strategies and future opportunities. Curr Pharm Des. 2010;16(38):4243–53.

    Article  CAS  Google Scholar 

  94. Huynh NN, McIntyre RS. What are the implications of the STAR*D trial for primary care? A review and synthesis. Prim Care Companion J Clin Psychiatry. 2008;10(2):91–6.

    Article  Google Scholar 

  95. Dutta A, McKie S, Deakin JF. Ketamine and other potential glutamate antidepressants. Psychiatry Res. 2015;225(1–2):1–13.

    Article  CAS  Google Scholar 

  96. McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN. Lam RW. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med. 2015;45(4):693–704.

    Article  CAS  Google Scholar 

  97. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475(7354):91–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ku Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Won, E., Ham, BJ., Kim, YK. (2019). Treatment-Resistant Depression: Understandings on the Neurobiological Etiology that Lead to Novel Pharmacological Treatment Options. In: Kim, YK. (eds) Treatment Resistance in Psychiatry. Springer, Singapore. https://doi.org/10.1007/978-981-10-4358-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4358-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4357-4

  • Online ISBN: 978-981-10-4358-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics