Skip to main content

Abstract

Self-adjusting concrete has the capability to adjust its internal structures (e.g., pore structures) and performances (e.g., heat capacity, moisture content, and hydration process) under external actions. It mainly includes moisture self-adjusting concrete, thermal parameter self-adjusting concrete, and hydration heat self-adjusting concrete. Self-adjusting concrete not only has the ability to improve the comfort of habitation, but also features the ability to avoid the temperature cracks induced by the cement hydration heat and the concrete spalling caused by high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.B. Zhang, H. Yoshino, Analysis of indoor humidity environment in Chinese residential buildings. Build. Environ. 45, 2132–2140 (2010)

    Article  Google Scholar 

  2. A.V. Arundel, E.M. Sterling, J.H. Biggin, T.D. Sterling, Indirect health effects of relative humidity in indoor environments. Environ. Health Perspect. 65, 351–361 (1986)

    Google Scholar 

  3. H.W. Wang, H.H. Wang, Y.Y. Zhuang. The application prospect of hygroscopic materials for construction of energy-saving. Refrigeration and Air Conditioning 2009, 23(6): 102–105.G.Y. Hou,Z.J. Ji,J. Wang,J.M. Wang, X.Y.Wang. Domestic and abroad research status of humidity-control materials. Materials Review 2008,22(8):78–81

    Google Scholar 

  4. G.Y. Hou, Z.J. Ji, J. Wang, J.M. Wang, X.Y. Wang, Domestic and abroad research status of humidity-control materials. Mater. Rev. 22(8), 78–81 (2008)

    Google Scholar 

  5. J.H. Wang, Z.W. Wang, Advances in humidity-controlling composite materials. Mater. Rev. 6(21), 55–58 (2007)

    Google Scholar 

  6. M. Nehdi, M. Hayek. Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cement Concr. Res. 35, 731–742 (2005)

    Google Scholar 

  7. D.H. Vu, K.H. Wang, B.H. Bac, B.X. Nam, Humidity control materials prepared from diatomite and volcanic ash. Constr. Build. Mater. 38, 1066–1072 (2013)

    Article  Google Scholar 

  8. T. Horikawa, Y. Kitakaze, T. Sekida, Y. Hayashi, M. Katoh, Characteristics and humidity control capacity of activated carbon from bamboo. Biores. Technol. 101, 3964–3969 (2010)

    Article  Google Scholar 

  9. K. Goto, S. Terao, Structures and humidity controlling performances of zeolite-cement hardened body. J. Ceram. Soc. Jpn. 113, 739–742 (2005)

    Article  Google Scholar 

  10. Z.L. Deng, B.C. Zheng, L.F. Fu, Studies on The self-humidity controlling characteristic of cement-based composite material modified by attapulgite. Non-Metallic Min. 4(30), 27–30 (2007)

    Google Scholar 

  11. Z.Y. Li, F.L. Wei, W.H. Liu. Manufacture on building blocks of humidity-controlling composite materials used in greenhouse. 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE), pp. 1125–1128

    Google Scholar 

  12. Z.H. Guo,D.K. Shang,J.S. L,J.Z. Wang, G.J. Wang. Study on self-adjustment humidity performance of sepiolite fibers. J Funct Mater 35, 2603–2606 (2004)

    Google Scholar 

  13. H.Y. Jiang, Y.P. Wang, W.X. Wan, Research of pore-structure and humidity-control performance about Zeolite and Diatomite. Bulletin Chin. Ceram. Soc. 25, 30–33 (2006)

    Google Scholar 

  14. B.G. Han, Y.Y. Wang, S.F. Dong, S.Q. Ding, X. Yu, J.P. Ou, Smart concretes and structures: a review. J. Intell. Mater. Syst. Struct. 26, 1303–1345 (2015)

    Article  Google Scholar 

  15. M.Y. Ran, Review of research and application of air humidity controlling in Japan. Mater. Rev 16(11), 42–44 (2002)

    Google Scholar 

  16. D. Laing, D. Lehmann, M. Fiß, C. Bahl, Test results of concrete thermal energy storage for parabolic trough power plants. J. Sol. Energy Eng. 131(4), 041007 (2009)

    Article  Google Scholar 

  17. M. Hadjieva, R. Stoykov, T.Z. Filipova, Composite salt-hydrate concrete system for building energy storage. Renew. Energy 19(1), 111–115 (2000)

    Article  Google Scholar 

  18. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009)

    Article  Google Scholar 

  19. B. Zalba, J. M. Marı́n, L. F. Cabeza, H. Mehling. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Google Scholar 

  20. F. Kuznik, J. Virgone, J. Noel, Optimization of a phase change material wallboard for building use. Appl. Therm. Eng. 28, 1291–1298 (2008)

    Article  Google Scholar 

  21. A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew. Sustain. Energy Rev. 12, 2438–2458 (2008)

    Article  Google Scholar 

  22. A.M. Khudhair, M.M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45, 263–275 (2004)

    Article  Google Scholar 

  23. L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008)

    Article  Google Scholar 

  24. D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20(1), 77–86 (1993)

    Article  Google Scholar 

  25. D.W. Hawes, D. Banu, D. Feldman, The stability of phase change materials in concrete. Sol. Energy Mater. Sol. Cells 27(2), 103–118 (1992)

    Article  Google Scholar 

  26. D. Zhang, Z. Li, J. Zhou, K. Wu, Development of thermal energy storage concrete. Cem. Concr. Res. 34(6), 927–934 (2004)

    Article  Google Scholar 

  27. D.P. Bentz, R. Turpin, Potential applications of phase change materials in concrete technology. Cement Concr. Compos. 29(7), 527–532 (2007)

    Article  Google Scholar 

  28. A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol. Energy 85(5), 1007–1020 (2011)

    Article  Google Scholar 

  29. C. Castellón, M. Medrano, J. Roca. Use of microencapsulated phase change materials in building applications. ASHRAE. Project ENE2005-08256-C02-01/ALT. 2007

    Google Scholar 

  30. C. Vener, in Phase Change Thermal Energy Storage. Dissertation for the Doctor Degree in Built Environment, (University of Brighton, 1997)

    Google Scholar 

  31. A.A. Ghoneim, S.A. Klein, J.A. Duffie, Analysis of collector-storage building walls using phase-change materials. Sol. Energy 47(3), 237–242 (1991)

    Article  Google Scholar 

  32. A.M. Khudhair, M.M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45(2), 263–275 (2004)

    Article  Google Scholar 

  33. G. A. Lane. Solar heat storage: latent heat materials. CRC Press. 1983

    Google Scholar 

  34. Z. Kaihong, Review of the application of phase change energy-storing material on building energy saving. Guangzhou Archit. 2, 012 (2006)

    Google Scholar 

  35. Y. Hirayama, S. Jolly, W.J. Batty. Investigation of thermal energy storage within building thermal mass in northern Japan through dynamic building and building services simulation. In Proceedings of Seventh International Conference on Thermal Energy Storage, (1997), pp. 355–360

    Google Scholar 

  36. T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: an overview. Constr. Build. Mater. 46, 55–62 (2013)

    Article  Google Scholar 

  37. M. Hunger, A.G. Entrop, I. Mandilaras, H.J.H. Brouwers, M. Fount, The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concr. Compos. 31(10), 731–743 (2009)

    Article  Google Scholar 

  38. D.W. Hawes, D. Banu, D. Feldman, Latent heat storage in concrete II. Solar Energy Mater. 21, 61–80 (1990)

    Article  Google Scholar 

  39. L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39(2), 113–119 (2007)

    Article  Google Scholar 

  40. B. Han, K. Zhang, X. Yu, Enhance the thermal storage of cement-based composites with phase change materials and carbon nanotubes. J. Sol. Energy Eng. 135(2), 024505 (2013)

    Article  Google Scholar 

  41. M. Farid, W. J. Kong. Underfloor heating with latent heat storage. Proc. Inst. Mech. Eng. Part A: J. Power Energy. 215, 601–609 (2001)

    Google Scholar 

  42. A.R. Sakulich, D.P. Bentz, Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles. J. Mater. Civ. Eng. 24(8), 1034–1042 (2011)

    Article  Google Scholar 

  43. D.W. Hawes, D. Banu, D. Feldman, Latent heat storage in concrete. Solar Energy Materials. 19(3), 335–348 (1989)

    Article  Google Scholar 

  44. M. Pomianowski, P. Heiselberg, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)

    Article  Google Scholar 

  45. L.F. Cabeza, A. Castell, C. Barreneche, A. DeGracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 15(3), 1675–1695 (2011)

    Article  Google Scholar 

  46. K. Menoufi, A. Castell, M.M. Farid, D. Boer, L.F. Cabeza, Life cycle assessment of experimental cubicles including PCM manufactured from natural resources (esters): a theoretical study. Renew. Energy 51, 398–403 (2013)

    Article  Google Scholar 

  47. M.I. Sánchez de Rojas, M.P. Luxan, M. Frı́as, N. Garcı́a. The influence of different additions on portland cement hydration heat. Cem. Concr. Res. 23(1), 46–54 (1993)

    Article  Google Scholar 

  48. J.K. Kim, K.H. Kim, J.K. Yang, Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Comput. Struct. 79(2), 163–171 (2001)

    Article  MathSciNet  Google Scholar 

  49. W. Nocuń-Wczelik, P. Czapik, Use of calorimetry and other methods in the studies of water reducers and set retarders interaction with hydrating cement paste. Constr. Build. Mater. 38, 980–986 (2013)

    Article  Google Scholar 

  50. I. Pane, W. Hansen, Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res. 35(6), 1155–1164 (2005)

    Article  Google Scholar 

  51. W.C. Liu, W.L. Cao, H.Q. Yan, T.X. Ye, W. Jia, Experimental and numerical studies of controlling thermal cracks in mass concrete foundation by circulating water. Applied Sciences. 6(4), 110 (2016)

    Article  Google Scholar 

  52. B. Šavija, E. Schlangen, Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: Theoretical considerations. Constr. Build. Mater. 126, 332–344 (2016)

    Article  Google Scholar 

  53. C.X. Qian, G.B. Gao, Z. H He, R. Y. Li. Feasibility research of using phase change materials to reduce the inner temperature rise of mass concrete. J Wuhan Univ. Technol-Mater. Sci. Ed. 30(5), pp. 989–994

    Google Scholar 

  54. W.C. Choi, B.S. Khil, Y.S. Chae, Q.B. Liang, H.D. Yun, Feasibility of using phase change materials to control the heat of hydration in massive concrete structures. Sci. World J. 2014, 1–6 (2014)

    Google Scholar 

  55. J.J. Xing, X.J. Guan, Study on the control over the cement hydration heat of the phase change materials. Res. Appl. Build. Mater. 6, 4–6 (2006)

    Google Scholar 

  56. W. Shi, X. Zhang, D. Juergen, Temperature control properties of mass concrete with phase change material. J. Tongji Univ. (Nat. Sci.) 38(04), 564–568 (2010)

    Google Scholar 

  57. W. Shi, J.P. Hou, X. Zhang, Properties of paraffin phase-change-material(PCM) mass concrete for temperature control. J Bulid. Mater. 13(03), 414–417 (2010)

    Google Scholar 

  58. G. Kim, E. Lee, Y. Kim, B. Khil, Hydration heat and autogenous shrinkage of High-Strength mass concrete containing phase change material. J Asian Archit Build. Eng. 9(2), 455–462 (2010)

    Article  Google Scholar 

  59. A. Eddhahak, S. Drissi, J. Colin, S. Caré, J. Neji, Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars. J. Therm. Anal. Calorim. 117(2), 537–545 (2014)

    Article  Google Scholar 

  60. Y.R. Kim, B.S. Khil, S.J. Jiang, W.C. Choi, H.D. Yun, Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete. Thermochim. Acta 613, 100–107 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Han, B., Zhang, L., Ou, J. (2017). Self-Adjusting Concrete. In: Smart and Multifunctional Concrete Toward Sustainable Infrastructures. Springer, Singapore. https://doi.org/10.1007/978-981-10-4349-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4349-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4348-2

  • Online ISBN: 978-981-10-4349-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics