Skip to main content

On Uncertain-Fractional Modeling: The Future Way of Modeling Real-World Problems

  • Chapter
  • First Online:
Advances in Real and Complex Analysis with Applications

Part of the book series: Trends in Mathematics ((TM))

Abstract

It has been a long time a challenge for many researchers to give a real interpretation of derivatives with fractional order. Some researchers said, fractional derivative is the shadow on the wall. This interpretation was wrong since the shadow of any object does not provide the real properties of the real object, for instance a black man has the same shadow with a white man. Using the definition and applications of a convolution, we gave new interpretation of derivative with fractional order. We gave specific interpretation for Caputo and Caputo–Fabrizio types as the fractional order changes. It was long believed that, the derivative with fractional order portray the effect of memory, this was only proved to be true in theory of elasticity and nowhere else. In this chapter, we introduced a new operator called uncertain derivative capable or portraying the memory effect in almost all situation. In order to include into mathematical formulation, the real rate of change and also the effect of memory, we introduced a new way of modeling real-world problem called uncertain-fractional modeling (UFM) and applied it to advection dispersion model. Numerical simulations of the new model show that real-world observation. This method will be the future way of modeling real-world problem efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Cajori, The history of notations of the calculus. Ann. Math. 25(1), 1–46 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Leonid, J. Lebedev, M. Cloud, Approximating Perfection: a Mathematician’s Journey into the World of Mechanics, The Tools of Calculus (Princeton University Press, Princeton, 2004)

    Google Scholar 

  3. J. Albers, Donald, D. Richard, O. Anderson, L. Don, ed. Undergraduate Programs in the Mathematics and Computer Sciences: The 1985-1986 Survey, Mathematical Association of America No. 7, 1986

    Google Scholar 

  4. B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, Fractional calculus and its applications. Lect. Notes Math. 457, 1–36 (1975)

    Article  Google Scholar 

  5. L. Debnath, A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004)

    Article  MathSciNet  Google Scholar 

  6. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  7. D. Benson, S. Wheatcraft, M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res 36, 1403–1412 (2000)

    Article  Google Scholar 

  8. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  9. J. Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  10. S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. G.R.J. Cooper, D.R. Cowan, Filtering using variable order vertical derivatives. Comput. Geosci. 30, 455–459 (2004)

    Article  Google Scholar 

  12. H. Sun, W. Chen, Y. Chen, Variable-order fractional differential operatorsin anomalous diffusion modeling. Phys. A 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  13. A. Atangana, A generalized advection dispersion equation. J. Earth Syst. Sci. 123(1), 101–108 (2014)

    Article  Google Scholar 

  14. A. Atangana, S.C. Oukouomi Noutchie, A modified groundwater flow model using the space time Riemann-Liouville fractional derivatives approximation, Abstr. Appl. Anal. 2014, Article ID 498381, 7 pp (2014)

    Google Scholar 

  15. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  16. M. Davison, C. Essex, Fractional differential equations and initial value problems. Math.Sci. 23(2), 108–116 (1998)

    MathSciNet  MATH  Google Scholar 

  17. A. Atangana, Local derivative with new parameter: Theory, Methods and Applications, ISBN 978-0-08-100644-3 (Academic press, Elsevier, 2015)

    Google Scholar 

  18. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A 38(42), L679–L684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. H.G. Sun, W. Chen, Y.Q. Chen, Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  20. S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Zeitschrift für Analysis und ihre Anwendungen 28(4), 431–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.T. van Genuchten, W.J. Alves, Analytical Solutions of One Dimensional Convective-Dispersive Solute Transport Equations, Technical Bulletin, no. 1661, United State Department of Agriculture (1982)

    Google Scholar 

  24. D.A. Benson, R. Schumer, M.M. Meerschaert, S.W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42(1–2), 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  25. M.H. Tavassoli, A. Tavassoli, M.R. Ostad Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differ. Geom. Dyn. Syst. 15, 93–104 (2013)

    MathSciNet  MATH  Google Scholar 

  26. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Z. Udo, ed. by DAFX:Digital Audio Effects, pp. 48–49 (2002)

    Google Scholar 

  28. J. Watkinson, The art of sound reproduction. Focal Press 268, 479 (2009)

    Google Scholar 

  29. A. Atangana, A. Kilicman, On the generalized mass transport equation to the concept of variable fractional derivative. Math. Prob. Eng. 2014, 9 (2014)

    MathSciNet  MATH  Google Scholar 

  30. A. Atangana, J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7(10), 1–7 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilknur Koca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Atangana, A., Koca, I. (2017). On Uncertain-Fractional Modeling: The Future Way of Modeling Real-World Problems. In: Ruzhansky, M., Cho, Y., Agarwal, P., Area, I. (eds) Advances in Real and Complex Analysis with Applications. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-10-4337-6_7

Download citation

Publish with us

Policies and ethics