Skip to main content

Abstract

Trap crops are plants grown before or with the main crop in a smaller area (the trap crop). They are the more preferred hosts when grown with the main crop. Trap crops can increase the efficiency of control by concentrating the pests in one location and by applying a chemical treatment without spraying the main crop, or by destroying the trap crops and associated pests through tillage or burning. It is also possible to release biological control agents into the trap crops, using it as a nursery for beneficial organisms that will then spread into the main crop. The trap crops are effectively employed for the control of several herbivores, nematodes, and weeds in several agroecosystems. Trap cropping is economical to adopt, saves on input use, and is effective against pests, resulting in increased productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aluja M, Jimenez A, Camino M, Pi˜nero J, Aldana L, Caserjon V, Valdes ME (1997) Habitat manipulation to reduce papaya fruit fly (Diptera: Tephritidae) damage: orchard design, use of trap crops and border trapping. J Econ Entomol 90:1567–1576

    Article  Google Scholar 

  • Ayyar PNK (1926) A preliminary note on the root nematode, Heterodera radicicola Mitter and its economic importance in South India. Sci Cult 22:391–393

    Google Scholar 

  • Badenes-Perez FR, Shelton AM, Nault BA (2005) Using yellow rocket as a trap crop for the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). J Econ Entomol 98:884–890

    Article  PubMed  Google Scholar 

  • Bennison J, Maulden K, Dewhirst S, Pow EM, Slatter P, Wadhams LJ (2001) Towards the development of a push-pull strategy for improving biological control of western flower thrips on Chrysanthemum. In: Proceedings of the international symposium thrips and tospoviruses: thysanoptera, Reggio, Calabria, Italy, pp 199–206

    Google Scholar 

  • Borden JH, Greenwood ME (2000) Cobaiting for spruce beetles, Dendroctonus rufipennis (Kirby), and western balsam bark beetles, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). Can J For Res 30:50–58

    Article  Google Scholar 

  • Boucher TJ, Durgy R (2003) Perimeter trap cropping for summer squash and cucumbers. In: Proceedings of the New England vegetable & berry conference and trade show, pp 217–219

    Google Scholar 

  • Boucher TJ, Ashley R, Durgy R, Sciabarrasi M, Calderwood W (2003) Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping. J Econ Entomol 96(2):420–432

    Article  PubMed  Google Scholar 

  • Brewer GJ, Schmidt G (1995) Trap cropping to manage the red sunflower seed weevil in oilseed sunflower. Am J Altern Agric 10:184–187

    Article  Google Scholar 

  • Cao J, Shelton AM, Earle ED (2005) Development of transgenic collards (Brassica oleracea L. var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Prot 24:804–813

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA (2002) Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetle. J Exp Biol 205:1925–1933

    PubMed  Google Scholar 

  • Duraimurugan P, Regupathy A (2005) Push-pull strategy with trap crops, neem and nuclear polyhedrosis virus for insecticide resistance management in Helicoverpa armigera (Hubner) in cotton. Am J Appl Sci 2:1042–1048

    Article  Google Scholar 

  • Eigenbrode SD, Stoner KA, Shelton AM, Kain WC (1991) Characteristics of glossy leaf waxes associated with resistance to diamondback moth (Lepidoptera: Plutellidae) in Brassica oleracea. J Econ Entomol 84:1609–1618

    Article  Google Scholar 

  • ESA (2003) Entomological Society of America annual meeting. Abstracts available at http://esa.confex.com/esa/2003/techprogram/session_1315.htm

  • Fereres A (2000) Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res 71:221–231

    Article  CAS  PubMed  Google Scholar 

  • Foster SP, Denholm I, Thompson R, Poppy GM, Powell W (2005) Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bull Entomol Res 95:37–46

    Article  CAS  PubMed  Google Scholar 

  • Funderburk J, Reitz S, Stansly P, Olson S, Sui D, McAvoy G, Whidden A, Demirozer O, Nuessly G, Leppla N (2011) Managing thrips in pepper and eggplant. IFAS Extension Publication ENY 658, University of Florida, 11 pp

    Google Scholar 

  • Godfrey LD, Leigh TF (1994) Alfalfa harvest strategy effect on Lygus bug (Hemiptera: Miridae) and insect predator population density: implications for use as trap crop in cotton. Environ Entomol 23:1106–1118

    Article  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves D, Ferreira S (2003) Transgenic papaya: a case for managing risks of papaya ringspot virus in Hawaii. Plant Health Prog. doi:10.1094/PHP- 2003-1113-03-RV

    Google Scholar 

  • Hokkanen HMT (1989) Biological and agro-technical control of the rape blossom beetle Meligethes aeneus (Coleoptera: Nitidulidae). Acta Entomol Fenn 53:25–30

    Google Scholar 

  • Hokkanen H (1991) Trap cropping in pest management. Annu Rev Entomol 36:119–138

    Article  Google Scholar 

  • Hoy CW (1999) Colorado potato beetle resistance management strategies for transgenic potatoes. Am J Potato Res 76:215–219

    Article  Google Scholar 

  • Hoy CW, Vaughn TT, East DA (2000) Increasing the effectiveness of spring trap crops for Leptinotarsa decemlineata. Entomol Exp Appl 96:193–204

    Article  Google Scholar 

  • Jackai LEN, Singh SR (1983) Suitability of selected leguminous plants for development of Maruca testulalis larvae. Entomol Exp Appl 34:174–178

    Article  Google Scholar 

  • Khaderkhan H, Nataraju MS, Nagaraja GN (1998) Economics of IPM in tomato. In: Parvatha Reddy P, Krishna Kumar NK, Verghese A (eds) Advances in IPM for horticultural crops. Association for Advancement of Pest Management in Horticultural Ecosystems, Indian Institute of Horticulture Research, Bangalore, pp 151–152

    Google Scholar 

  • Khan ZR, Pickett JA (2004) The ‘push-pull’ strategy for stem borer management: a case study in exploiting biodiversity and chemical ecology. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CABI, Wallington, pp 155–164

    Google Scholar 

  • Khan ZR, Ampong-Nyarko K, Chiliswa P, Hassanali A, Kimani S, Lwande W, Overholt WA, Pickett JA, Smart LE, Wadhams LJ, Woodcock CM (1997) Intercropping increases parasitism of pests. Nature 388:631–632

    Article  CAS  Google Scholar 

  • Khan ZR, Midega CAO, Hutter NJ, Wilkins RM, Wadhams LJ (2006) Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. Entomol Exp Appl 119:15–22

    Article  Google Scholar 

  • Krishna Moorthy PN, Krishna Kumar NK, Girija G, Varalakshmi B, Prabhakar M (2003) Integrated pest management in cabbage cultivation. Extn Bull No 1, Indian Institute of Horticulture Research, Bangalore, 10 pp

    Google Scholar 

  • Kuepper G, Thomas R (2002) “bug vacuums” for organic crop protection. ATTRA, Fayetteville

    Google Scholar 

  • Lu J, Liu YB, Shelton AM (2004) Laboratory evaluations of a wild crucifer Barbarea vulgaris as a management tool for diamondback moth. Bull Entomol Res 94:509–516

    Article  PubMed  Google Scholar 

  • Maguire L (1983) Influence of collard patch size on population densities of lepidopteron pests (Lepidoptera: Pieridae, Plutellidae). Environ Entomol 12:1415–1419

    Article  Google Scholar 

  • Majumdar AZ, Akridge R, Becker C, Caylor A, Pitts J, Price M, Reeves M (2012) Trap crops for leaf-footed bug management in tomatoes. J Nat Assoc Cty Agric Agents (NACAA) 5(2)

    Google Scholar 

  • Martel JW, Alford AR, Dickens JC (2005) Synthetic host volatiles increase efficacy of trap cropping for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Agric For Entomol 7:79–86

    Article  Google Scholar 

  • Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212

    Article  CAS  PubMed  Google Scholar 

  • Mitchell ER, Hu G, Johanowicz D (2000) Management of diamondback moth (Lepidoptera: Plutellidae) in cabbage using collard as a trap crop. Hortic Sci 35:875–879

    Google Scholar 

  • Mohandas C (2001) Nematode diseases of tuber crops and their management. In: National conference on centenary of nematolgy in India – appraisal & future plans. Indian Agricultural Research Institute, New Delhi, pp 35–36

    Google Scholar 

  • Muthiah C (2003) Integrated management of leaf miner (Aproarema medicella) in groundnut (Arachis hypogaea). Indian J Agric Sci 73:466–468

    Google Scholar 

  • Pair SD (1997) Evaluation of systemically treated squash trap plants and attracticidal baits for early-season control of striped and spotted cucumber beetles (Coleoptera: Chrysomelidae) and squash bug (Hemiptera: Coreidae) in cucurbit crops. J Econ Entomol 90:1307–1314

    Article  Google Scholar 

  • Pawar DB, Lawande KE (1999) Effects of mustard as a trap crop for diamondback moth on cabbage. J Maharashtra Agric Univ 20:185–186

    Google Scholar 

  • Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:257–268

    Article  Google Scholar 

  • Potting RPJ, Perry JN, Powell W (2005) Insect behavioral ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Model 182:199–216

    Article  Google Scholar 

  • Raffa KF, Frazier JL (1988) A generalized model for quantifying behavioral desensitization to antifeedants. Entomol Exp Appl 46:93–100

    Article  Google Scholar 

  • Rangaswamy SD, Parvatha Reddy P, Nanje Gowda DN (1999) Management of root-knot nematode, Meloidogyne incognita in tomato by intercropping with marigold and mustard. Pest Mang Hortic Ecosyst 5:118–121

    Google Scholar 

  • Rea JH, Wratten SD, Sedcole R, Cameron PJ, Davis SI (2002) Trap cropping to manage green vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric For Entomol 4:101–107

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Seal DR, Chalfant RB, Hall MR (1992) Effects of cultural practices and rotational crops on abundance of wireworms (Coleoptera: Elateridae) affecting sweet potato in Georgia. Environ Entomol 21:969–974

    Article  Google Scholar 

  • Shelton AM, Badenes-Perez FR (2006) Concept and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Nault BA (2004) Dead-end trap cropping: a technique to improve management of the diamondback moth. Crop Prot 23:497–503

    Article  Google Scholar 

  • Shivaramu K (1999) Investigations on fruit borer Helicoverpa armigera (Hubner) in Chilli. Ph.D thesis, University of Agricultural Sciences, Dharwad, India

    Google Scholar 

  • Showler A, Moran P (2003) Effects of drought stressed cotton, Gossypium hirsutum L., on beet armyworm, Spodoptera exigua (Hubner), oviposition, and larval feeding preferences and growth. J Chem Ecol 29:1997–2011

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Trivedi TP, Sardana HR, Sabir N, Krishna Moorthy PN, Pandey KK, Sengupta A, Ladu LN, Singh DK (2004) Integrated pest management in horticultural crops – a wide area approach. In: Chadha KL, Ahluwalia BS, Prasad KV, Singh SK (eds) Crop improvement and production technology of horticultural crops. Hort Soc of India, New Delhi, pp 621–636

    Google Scholar 

  • Smart LE, Blight MM, Pickett JA, Pye BJ (1994) Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L. Crop Prot 13:127–135

    Article  Google Scholar 

  • Srinivasan K, Krishna Moorthy PN (1991) Indian mustard as a trap crop for management of major lepidopterous pests on cabbage. Tropic Pest Manag 37:26–32

    Article  Google Scholar 

  • Srinivasan K, Krishna Moorthy PN, Raviprasad TN (1994) African marigold as a trap crop for the management of the fruit borer Helicoverpa armigera on tomato. Int J Pest Mang 40:56–63

    Article  Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89

    Article  Google Scholar 

  • Thurston HD (1991) Sustainable practices for plant disease management in traditional farming systems. Westview, Boulder, 279 pp

    Google Scholar 

  • UC IPM (University of Connecticut, Integrated Disease Management) (2011) Having problems controlling vegetable crop diseases? Try rotation. http://www.hort.uconn.edu/ipm/veg/htms/rotate.htm

  • Vernon RS, Kabaluk JT, Behringer AM (2000) Aggregation of Agriotes obscures (Coleoptera: Elateridae) at cereal bait stations in the field. Can Entomol 135:379–389

    Google Scholar 

  • Virk JS, Brar KS, Sohi AS (2004) Role of trap crops in increasing parasitization efficiency of Trichogramma chilonis Ishii in cotton. J Biol Control 18:61–64

    Google Scholar 

  • Zalom FG, Phillips PA, Toscano NC, Udayagiri S (2001) UC pest management guidelines: strawberry: lygus bug. University of California Department of Agriculture and Natural Resources, Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ptd.

About this chapter

Cite this chapter

Reddy, P.P. (2017). Trap Cropping. In: Agro-ecological Approaches to Pest Management for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-4325-3_9

Download citation

Publish with us

Policies and ethics