Skip to main content
  • 1347 Accesses

Abstract

The pest incidence and abundance are influenced by agro-forestry practices through both top-down regulation (by increased natural enemies) and bottom-up factors (moderation of microclimate, soil nutrients and water content). In general, the higher abundances of natural enemies and lower abundances of pests are brought about by agro-forestry practices. The crop type decides the effects of agro-forestry on invertebrate pests and diseases. Agro forestry was associated with lower pest abundances and less plant damage in perennial crops such as coffee, cocoa and plantain, while these effects were not significant in annual crops like maize, rice and beans. In conclusion, agro-forestry is beneficial in terms of pest, disease and weed management because the combination of trees and crops provides greater niche diversity and complexity in both time and space than polyculture of annual crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathol 53:541–547

    Article  Google Scholar 

  • Avelino J, Zelaya H, Merlo A, Pineda A, Ordoñez M, Savary S (2006) The intensity of a coffee rust epidemic is dependent on production situations. Ecol Model 197:431–447

    Article  Google Scholar 

  • Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R, Esquivel C, Durand JF, Cilas C (2007) Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–1542

    Article  PubMed  Google Scholar 

  • Barrios E, Kwesiga F, Buresh RJ, Sprent JI, Coe R (1998) Relating preseason soil nitrogen to maize yield in tree legume-maize rotations. Soil Sci Soc Am J 62:1604–1609

    Article  CAS  Google Scholar 

  • Barrios E, Cobo JG, Rao IM, Thomas RJ, Amezquita E, Jimenez JJ, MA R’n (2005) Fallow management for soil fertility recovery in tropical Andean agroecosystems in Colombia. Agric Ecosyst Environ 110:29–42

    Article  Google Scholar 

  • Barrios E, Sileshi GW, Shepherd K, Sinclair F (2012) Agroforestry and soil health: linking trees, soil biota and ecosystem services. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 315–330

    Chapter  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Bigger M (1981) Observations on the insect fauna of shaded and unshaded Amelonado cocoa. Bull Entomol Res 71:107–119

    Article  Google Scholar 

  • Bisseleua HBD, Fotio D, Yede Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS One 8:e56115

    Article  CAS  PubMed  Google Scholar 

  • Bugg RL, Waddington C (1994) Using cover crops to manage arthropod pests of orchard: a review. Agric Ecosyst Environ 50:11–28

    Article  Google Scholar 

  • Carson AG (1989) Effect of intercropping sorghum and groundnut on density of Striga hermonthica in the Gambia. Trop Pest Manag 35:130–132

    Article  Google Scholar 

  • Chaplin-Kramer R, ME O’R, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  • Desaeger J, Rao MR (2000) Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crop Res 65:41–56

    Article  Google Scholar 

  • Evans HC (1973) Invertebrate vectors of Phytophthora palmivora, causing black pod disease of cocoa in Ghana. Ann Appl Biol 75(3):331–345

    Article  Google Scholar 

  • Fargues J, Rougier M, Goujet R, Itier B (1988) The effect of sunlight on the field persistence of conidiospores of the entomopathogenic hyphomycete, Nomuraea rileyi, on the surface of vegetables. Entomophaga 33:357–370

    Article  Google Scholar 

  • Gacheru E, Rao MR (1998) Prospects of agroforestry for Striga management. Agrofor Forum 9(2):22–27

    Google Scholar 

  • Girma H, Rao MR, Sithanantham S (2000) Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya. Agrofor Syst 50:279–292

    Article  Google Scholar 

  • Heitefuss R (1987) Pflanzenschutz. Georg Verlag Thieme, Stuttgart. 342 pp. ISBN: 3135133028/3-13-513302-8

    Google Scholar 

  • ICRAF (1993) Annual Report for 1992. International Centre for Research in Agroforestry, Nairobi, Kenya

    Google Scholar 

  • Iverson AL, Marin LE, Ennis KK, Gonthier DJ, Connor-Barrie BT, Remfert JL, Cardinale BJ, Perfecto I (2014) Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J Appl Ecol 51:1593–1602

    Article  Google Scholar 

  • Jaques RP (1983) The potential of pathogens for pest control. Agric Ecosyst Environ 10:101–126

    Article  Google Scholar 

  • Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, Borgemeister C (2009) Thermal tolerance of the Coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4:e6487

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaramillo J, Setamou M, Muchugu E, Chabi-Olaye A, Jaramillo A, Mukabana J, Maina J, Gathara S, Borgemeister C (2013) Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the last 80 years. PLoS One 8:e51815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson M, Raphael IA, Ekbom B, Kyamanywa S, Karungi J (2015) Contrasting effects of shade level and altitude on two important coffee pests. J Pest Sci 88:281–287

    Article  Google Scholar 

  • Karp DS, Mendenhall CD, Sandi RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC (2013) Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett 16:1339–1347

    Article  PubMed  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2002) Predator-prey ratios on cocoa along a land-use gradient in Indonesia. Biodivers Conserv 11:683–693

    Article  Google Scholar 

  • Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL, Rangel AM, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21

    Article  PubMed  Google Scholar 

  • Liang W, Huang W (1994) Influence of citrus orchard ground cover plants on arthropod communities in China: a review. Agric Ecosyst Environ 50:29–37

    Article  Google Scholar 

  • MacLean RH, Litsinger JA, Moody K, Watson AK, Libetario EM (2003) Impact of Gliricidia sepium and Cassia spectabilis hedgerows on weeds and insect pest of upland rice. Agric Ecosyst Environ 94:275–288

    Article  Google Scholar 

  • Matata PZ, Gama BM, Mbwaga A, Mpanda M, Byamungu DA (2011) Effect of Sesbania sesban fallows on Striga infestation and maize yield in Tabora region of Western Tanzania. J Soil Sci Environ Manag 2:311–317

    Google Scholar 

  • Midega CA, Pittcha J, Salifu D, Pickett JA, Khan ZR (2013) Effects of mulching, N-fertilization and intercropping with Desmodium uncinatum on Striga hermonthica infestation in maize. Crop Prot 44:44–49

    Article  CAS  Google Scholar 

  • Mouen Bedimo JA, Njiayouom I, Bieysse D, Ndoumbé NM, Cilas C, Notteghem JL (2008) Effect of shade on Arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology 98:1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Nair PK (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nestel D, Altieri MA (1992) The weed community of Mexican coffee agroecosystems: effect of management upon plant biomass and species composition. Acta Oecol 13:715–726

    Google Scholar 

  • Ogol CKPO, Spence JR, Keddie B (1999) Maize stem borer colonization, establishment and crop damage levels in maize-leucaena agroforestry systems in Kenya. Agric Ecosyst Environ 76:1–15

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical system. Oecologia 108:577–582

    Article  CAS  PubMed  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, Van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Pumariño L, Sileshib GW, Gripenbergc S, Kaartinena R, Barriosb E, Muchaned MN, Midegae C, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic Appl Ecol 16:573–582

    Article  Google Scholar 

  • Rao MR, Singh MP, Day R (2000) Insect pest problems in tropical agroforestry systems: contributory factors and strategies for management. Agrofor Syst 50(3):243–277

    Article  Google Scholar 

  • Rodríguez-Kábana R (1992) Cropping systems for the management of phytonematodes. In: Grommers FJ, Maas PWT (eds) Nematology from molecule to ecosystem. Proceedings of the second international nematology congress, 11–17 August 1990. Veldhofen, European Society of Nematologists, Dundee, pp 219–233

    Google Scholar 

  • Schroth G, Krauss U, Gasparotto L, Duarte Aguilar JA, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2003) Effect of rotational fallows on abundance of soil insects and weeds in maize crops in eastern Zambia. Appl Soil Ecol 23:211–222

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2006a) Long-term effects of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia. Agric Ecosyst Environ 115:69–78

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2006b) Variation in macrofaunal communities under contrasting land use systems in eastern Zambia. Appl Soil Ecol 33:49–60

    Article  Google Scholar 

  • Sileshi G, Kenis M, Ogol CKPO, Sithanantham S (2001) Predators of Mesoplatys ochroptera StÃ¥l in Sebania-planted fallows in eastern Zambia. BioControl 46:289–310

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL, Kwesiga F, Nkunika P (2005) Termite damage to maize grown in agroforestry systems, traditional fallows and monoculture on nitrogen-limited soils in eastern Zambia. Agric For Entomol 7:61–69

    Article  Google Scholar 

  • Sileshi G, Kuntashula E, Mafongoya PL (2006) Legume improved fallows reduce weed problems in maize in eastern Zambia. Zambia J Agric 8:6–12

    Google Scholar 

  • Sileshi G, Mafongoya PL, Chintu R, Akinnifesi FK (2008a) Mixed-species legume fallows affect faunal abundance and richness and N cycling compared to single species in maize fallow rotation. Soil Biol Biochem 40:3065–3075

    Article  CAS  Google Scholar 

  • Sileshi G, Schroth G, Rao MR, Girma H (2008b) Weeds, diseases, insect pests and tritrophic interactions in tropical agroforestry. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, London, pp 73–94

    Google Scholar 

  • Sileshi GW, Mafongoya PL, Akinnifesi FK, Phiri E, Chirwa P, Beedy T, Makumba W, Nyamadzawo G, Njoloma J, Wuta M, Nyamugafata P, Jiri O (2014) Agroforestry: fertilizer trees. In: Van Alfen N (ed) Encyclopedia of agriculture and food systems 1. Elsevier, San Diego, pp 222–234

    Chapter  Google Scholar 

  • Smith J (2012) (unpublished). Data collected as part of CO-FREE project trials. Organic Research Centre, Newbury

    Google Scholar 

  • Stamps WT, Linit MJ (1998) Plant diversity and arthropod communities: implications for temperate agroforestry. Agrofor Syst 39:73–89

    Article  Google Scholar 

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Van Mele P, Cuc NTT (2007) Ants as friends: improving your tree crops with weaver ants, 2nd edn. Africa Rice Center (WARDA), Cotonou, Benin. 72 pp

    Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Way MJ, Khoo CK (1990) Colony dispersion and nesting habits of the ants, Dolichoderus thoracicus and Oecophyllas maragdina (Hymenoptera: Formicidae), in relation to their success as biological control agents on cocoa. Bull Entomol Res 81:341–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ptd.

About this chapter

Cite this chapter

Reddy, P.P. (2017). Agro-Forestry. In: Agro-ecological Approaches to Pest Management for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-4325-3_6

Download citation

Publish with us

Policies and ethics