Skip to main content

A Novel Medical E-Nose Signal Analysis System

  • Chapter
  • First Online:
Breath Analysis for Medical Applications

Abstract

Some components in human breath have been proven to be associated with certain diseases, such as diabetes and renal disease. The concentration of these components can also be linked to condition status, for example, blood glucose levels (BGLs) . We called these components diseases biomarkers and seek ways to detect them in human breath by using a specially designed e-nose system plus advanced pattern recognition algorithms. In this chapter, a novel optimized medical e-nose system specially for disease diagnosis and BGL prediction is proposed. A large scaled breath dataset is collected by the proposed system. Experiments are conducted on the collected dataset and the experimental results have shown that the proposed system can well solve the problems of existed systems and the methods have effectively improved the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artursson T, Eklöv T, Lundström I et al (2000) Drift correction for gas sensors using multivariate methods. J Chemom 14:711–723

    Article  Google Scholar 

  • Blatt R, Bonarini A, Calabro E et al. (2007) Lung cancer identification by an electronic nose based on an array of mos sensors. In: 2007 International Joint Conference on Neural Networks, IJCNN 2007. IEEE, pp 1423–1428

    Google Scholar 

  • Brekelmans MP, Fens N, Brinkman P et al (2016) Smelling the diagnosis: The electronic nose as diagnostic tool in inflammatory arthritis: a case-reference study. PloS one 11:e0151715

    Article  Google Scholar 

  • Broza YY, Zuri L, Haick H (2014) Combined volatolomics for monitoring of human body chemistry. Sci Rep 4:4611

    Article  Google Scholar 

  • Cao W, Duan Y (2007) Current status of methods and techniques for breath analysis. Crit Rev Anal Chem 37:3–13

    Article  Google Scholar 

  • Chou J (1999) Hazardous gas monitors: a practical guide to selection, operation, and applications. McGraw-Hill Professional Publishing

    Google Scholar 

  • Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52:223–228

    Article  Google Scholar 

  • Deykin A, Massaro AF, Drazen JM et al (2002) Exhaled nitric oxide as a diagnostic test for asthma: Online versus offline techniques and effect of flow rate. Am J Respir Crit Care Med 165:1597–1601

    Article  Google Scholar 

  • Di Natale C, Paolesse R, Martinelli E et al (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–17

    Article  Google Scholar 

  • Dragonieri S, Schot R, Mertens BJ et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    Article  Google Scholar 

  • Eisenmann A, Amann A, Said M et al (2008) Implementation and interpretation of hydrogen breath tests. J Breath Res 2:046002

    Article  Google Scholar 

  • Feudale RN, Woody NA, Tan H et al (2002) Transfer of multivariate calibration models: a review. Chemom Intell Lab Syst 64:181–192

    Article  Google Scholar 

  • Ghimenti S, Tabucchi S, Lomonaco T et al (2013) Monitoring breath during oral glucose tolerance tests. J Breath Res 7:017115

    Article  Google Scholar 

  • Gretton A, Bousquet O, Smola A et al. (2005) Measuring statistical dependence with hilbert-schmidt norms. In: Algorithmic learning theory. Springer, p 63–77

    Google Scholar 

  • Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613

    Article  Google Scholar 

  • Klaassen EM, Van De Kant KD, Jöbsis Q et al (2015) Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. Am J Respir Crit Care Med 191:201–207

    Article  Google Scholar 

  • Li J, Zhang D, Li Y et al (2017) Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection. Inf Sci 384:191–204

    Article  Google Scholar 

  • Lin Y-J, Guo H-R, Chang Y-H et al (2001) Application of the electronic nose for uremia diagnosis. Sens Actuators B: Chem 76:177–180

    Article  Google Scholar 

  • Marco S, Gutiérrez-Gálvez A (2012) Signal and data processing for machine olfaction and chemical sensing: a review. Sens J IEEE 12:3189–3214

    Article  Google Scholar 

  • Martinelli E, Falconi C, D’amico A et al (2003) Feature extraction of chemical sensors in phase space. Sens Actuators B: Chem 95:132–139

    Google Scholar 

  • Nakhleh MK, Amal H, Jeries R et al (2016) Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS nano

    Google Scholar 

  • Phillips M (1997) Method for the collection and assay of volatile organic compounds in breath. Anal Biochem 247:272–278

    Article  Google Scholar 

  • Phillips M, Altorki N, Austin JH et al (2007) Prediction of lung cancer using volatile biomarkers in breath1. Cancer Biomark 3:95–109

    Article  Google Scholar 

  • Phillips M, Boehmer JP, Cataneo RN et al (2004) Heart allograft rejection: Detection with breath alkanes in low levels (the hardball study). J Heart Lung Transpl 23:701–708

    Article  Google Scholar 

  • Phillips M, Cataneo RN, Ditkoff BA et al (2003) Volatile markers of breast cancer in the breath. Breast J 9:184–191

    Article  Google Scholar 

  • Phillips M, Cataneo RN, Greenberg J et al (2000) Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J Lab Clin Med 136:243–249

    Article  Google Scholar 

  • Righettoni M, Schmid A, Amann A et al (2013) Correlations between blood glucose and breath components from portable gas sensors and ptr-tof-ms. J Breath Res 7:037110

    Article  Google Scholar 

  • Risby TH, Solga S (2006) Current status of clinical breath analysis. Appl Phys B 85:421–426

    Article  Google Scholar 

  • Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725

    Article  Google Scholar 

  • Romain A-C, Nicolas J (2010) Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens Actuators B: Chem 146:502–506

    Article  Google Scholar 

  • Turner C (2011) Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes. Expert Rev Mol Diagn 11:497–503

    Article  Google Scholar 

  • Ueta I, Saito Y, Hosoe M et al (2009) Breath acetone analysis with miniaturized sample preparation device: In-needle preconcentration and subsequent determination by gas chromatography–mass spectroscopy. J Chromatogr B 877:2551–2556

    Article  Google Scholar 

  • Van Hooren MR, Leunis N, Brandsma DS et al (2016) Differentiating head and neck carcinoma from lung carcinoma with an electronic nose: a proof of concept study. Eur Arch Otorhinolaryngol 273:3897–3903

    Article  Google Scholar 

  • Wang C, Mbi A, Shepherd M (2010) A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin a1c. Sens J IEEE 10:54–63

    Article  Google Scholar 

  • Yan K, Kou L, Zhang D (2017) Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans Cybern

    Google Scholar 

  • Yan K, Zhang D (2016) Correcting instrumental variation and time-varying drift: a transfer learning approach with autoencoders. IEEE Trans Instrum Meas 65:2012–2022

    Article  Google Scholar 

  • Yan K, Zhang D, Wu D et al (2014) Design of a breath analysis system for diabetes screening and blood glucose level prediction. IEEE Trans Biomed Eng 61:2787–2795

    Article  Google Scholar 

  • Yu J-B, Byun H-G, So M-S et al (2005) Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens Actuators B: Chem 108:305–308

    Article  Google Scholar 

  • Zampolli S, Elmi I, Ahmed F et al (2004) An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens Actuators B: Chem 101:39–46

    Article  Google Scholar 

  • Zhang L, Tian F, Kadri C et al (2011) On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens Actuators B: Chem 160:899–909

    Article  Google Scholar 

  • Zhang L, Tian F, Nie H et al (2012) Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens Actuators B: Chem 174:114–125

    Article  Google Scholar 

  • Aeonose (2017) Aeonose and Aeolus bring tail wind. Available online: http://www.enose.nl/products/aeonose/ (2017). Access on 30 Jan 2017

  • PEN3 (2017) Portable Electronic Nose | AIRSENSE analytics. Available online: http://www.airsense.com/en/products/portable-electronic-nose/ (2017). Accessed on 30 Jan 2017

  • HERACLES (2017) HERACLES Electronic Nose, instrument for sensory analysis. http://www.alpha-mos.com/analytical-instruments/heracles-electronic-nose.php (2017). Accessed on 30 Jan 2017

  • Cyranose (2017) Cyranose Electronic Nose. Available online: http://www.sensigent.com/products/cyranose.html (2017). Accessed on 30 Jan 2017

  • zNose (2017) COMPUTER INTEGRATED zNose® Model 4600. Available online: http://www.estcal.com/product/computer-integrated-znoser (2017). Accessed on 30 Jan 2017

  • LONESTAR (2017) Lonestar Gas Analyzer. Available online: http://www.owlstonenanotech.com/lonestar (2017). Accessed on 30 Jan 2017

  • Shang D (2004) New concept of practical diabetes prevention. Anhui Science & Technology Publishing House

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, D., Guo, D., Yan, K. (2017). A Novel Medical E-Nose Signal Analysis System. In: Breath Analysis for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4322-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4322-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4321-5

  • Online ISBN: 978-981-10-4322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics