Skip to main content

Breath Signal Analysis for Diabetics

  • Chapter
  • First Online:
Breath Analysis for Medical Applications
  • 763 Accesses

Abstract

Much attention has been focused on the noninvasive blood glucose monitoring for diabetics. It has been reported that diabetics’ breath includes acetone with abnormal concentrations and the concentrations rise gradually with patients’ blood glucose values. Therefore, the acetone in human breath can be used to monitor the development of diabetes . This chapter investigates the potential of breath signals analysis as a way for blood glucose monitoring . We employ a specially designed chemical sensor system to collect and analyze breath samples of diabetic patients. Blood glucose values provided by blood test are collected simultaneously to evaluate the prediction results. To obtain an effective classification results, we apply a novel regression technique, SVOR, to classify the diabetes samples into four ordinal groups marked with “well controlled”, “somewhat controlled”, “poorly controlled”, and “not controlled”, respectively. The experimental results show that the accuracy to classify the diabetes samples can be up to 68.66%. The current prediction correct rates are not quite high, but the results are promising because it provides a possibility of noninvasive blood glucose measurement and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baraldi E, Carraro S (2006) Exhaled NO and breath condensate. Paediatr Respir Rev 7:20–22

    Article  Google Scholar 

  • Blatt R, Bonarini A, Calabro E, Della Torre M, Matteucci M, Pastorino U (2007) Lung cancer identification by an electronic nose based on an array of MOS sensors. Int Jt Conf Neural Netw 2007:1423–1428

    Article  Google Scholar 

  • Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins D, Vantini I (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83(4):817–822

    Google Scholar 

  • Chang C, Lin C (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  • Chu W (2005) Source code for support vector ordinal regression. http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm

  • Chu W, Keerthi S (2005) New approaches to support vector ordinal regression. In: Proceedings of the 22nd international conference on machine learning. ACM, pp 145–152

    Google Scholar 

  • D’Amico A, Di Natale C, Paolesse R, Macagnano A, Martinelli E, Pennazza G, Santonico M, Bernabei M, Roscioni C, Galluccio G et al (2007) Olfactory systems for medical applications. Sens Actuators: B Chem 130(1):458–465

    Google Scholar 

  • D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2009) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68:170–176

    Article  Google Scholar 

  • Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52(1):223–228

    Article  Google Scholar 

  • Dragonieri S, Schot R, Mertens B, Le Cessie S, Gauw S, Spanevello A, Resta O, Willard N, Vink T, Rabe K et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862

    Article  Google Scholar 

  • Dragonieri S, Annema J, Schot R, van der Schee M, Spanevello A, Carratú P, Resta O, Rabe K, Sterk P (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Article  Google Scholar 

  • Fleischer M, Simon E, Rumpel E, Ulmer H, Harbeck M, Wandel M, Fietzek C, Weimar U, Meixner H (2002) Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors. Sens Actuators B: Chem 83(1–3):245–249

    Article  Google Scholar 

  • Ferrante do Amaral C, Wolf B (2008) Current development in non-invasive glucose monitoring. Med Eng Phys 30(5):541–549

    Google Scholar 

  • Galassetti P, Novak B, Nemet D, Rose-Gottron C, Cooper D, Meinardi S, Newcomb R, Zaldivar F, Blake D (2005) Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Diabetes Technol Ther 7(1):115–123

    Article  Google Scholar 

  • Guo D, Zhang D, Li N, Zhang L, Yang J (2010) A novel breath analysis system based on electronic olfaction. IEEE Trans Biomed Eng 57(11):2753–2763

    Article  Google Scholar 

  • Horvath I, Loukides S, Wodehouse T, Kharitonov S, Cole P, Barnes P (1998) Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress. Br Med J 53(10):867–870

    Google Scholar 

  • Huang K, Aviyente S (2007) Sparse representation for signal classification. Adv Neural Inf Process Syst 19:609–616

    Google Scholar 

  • Kharitonov S, Wells A, O’connor B, Cole P, Hansell D, Logan-Sinclair R, Barnes P (1995) Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med 151(6):1889–1893

    Google Scholar 

  • Koh K, Kim S, Boyd S (2007) l1 ls: a matlab solver for large-scale \(l\)1-regularized least squares problems

    Google Scholar 

  • Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metab Res Rev 15(6):412–426

    Article  Google Scholar 

  • Le Marchand L, Wilkens L, Harwood P, Cooney R (2006) Breath hydrogen and methane in populations at different risk for colon cancer. Int J Cancer 55(6):887–890

    Article  Google Scholar 

  • Levey S, Balchum O, Medrano V, Jung R (1964) Studies of metabolic products in expired air. II. Acetone. J Lab Clin Med 63:574–584

    Google Scholar 

  • Liess M (2002) Electric-field-induced migration of chemisorbed gas molecules on a sensitive film-a new chemical sensor. Thin Solid Films 410(1–2):183–187

    Article  Google Scholar 

  • Lin Y, Guo H, Chang Y, Kao M, Wang H, Hong R (2001) Application of the electronic nose for uremia diagnosis. Sens Actuators B: Chem 76(1–3):177–180

    Article  Google Scholar 

  • Maziak W, Loukides S, Culpitt S, Sullivan P, Kharitonov S, Barnes P (1998) Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157(3):998–1002

    Article  Google Scholar 

  • Mohamed E, Linder R, Perriello G, Di Daniele N, Pöppl S, De Lorenzo A, (2002) Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes nutr Metab 15(4):215–221

    Google Scholar 

  • Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725

    Article  Google Scholar 

  • Rooth G, Ostenson S (1966) Acetone in alveolar air, and the control of diabetes. Lancet 2(7473):1102–1105

    Article  Google Scholar 

  • Sehnert S, Jiang L, Burdick J, Risby T (2002) Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers 7(2):174–187

    Article  Google Scholar 

  • Shang D (2003) New concept of practical diabetes prevention

    Google Scholar 

  • Shashua A, Levin A (2003) Ranking with large margin principle: two approaches. In: Advances in neural information processing systems, pp 961–968

    Google Scholar 

  • Shih C, Lin Y, Lee K, Chien P, Drake P (2010) Real time electronic nose based pathogen detection for respiratory intensive care patients. Sens Actuators B: Chem 153–157

    Google Scholar 

  • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  • Sulway M, Malins J (1970) Acetone in diabetic ketoacidosis. Lancet 296(7676):736–740

    Article  Google Scholar 

  • Tassopoulos C, Barnett D, Russell Fraser T (1969) Breath-acetone and blood-sugar measurements in diabetes. Lancet 293(7609):1282–1286

    Article  Google Scholar 

  • Tura A, Maran A, Pacini G (2007) Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res Clin Pract 77(1):16–40

    Article  Google Scholar 

  • Wang C, Mbi A, Shepherd M (2010) A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sens J 10(1):54–63

    Article  Google Scholar 

  • Wang P, Tan Y, Xie H, Shen F (1997) A novel method for diabetes diagnosis based on electronic nose. Biosens Bioelectron 12(9–10):1031–1036

    Google Scholar 

  • Zhang Q, Wang P, Li J, Gao X (2000) Diagnosis of diabetes by image detection of breath using gas-sensitive laps. Biosens Bioelectron 15(5–6):249–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, D., Guo, D., Yan, K. (2017). Breath Signal Analysis for Diabetics. In: Breath Analysis for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4322-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4322-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4321-5

  • Online ISBN: 978-981-10-4322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics