Skip to main content

Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames

  • Chapter
  • First Online:
RNA Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 983))

Abstract

A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5′ UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal S (1999) Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1489(1):53–68

    Article  CAS  PubMed  Google Scholar 

  2. Alekhina OM, Vassilenko KS (2012) Translation initiation in eukaryotes: versatility of the scanning model. Biochemistry (Mosc) 77(13):1465–1477

    Article  CAS  Google Scholar 

  3. Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LO (2012) Before it gets started: regulating translation at the 5′ UTR. Comp Funct Genomics 2012:475731

    Article  PubMed  PubMed Central  Google Scholar 

  4. Babendure JR, Babendure JL, Ding JH, Tsien RY (2006) Control of mammalian translation by mRNA structure near caps. RNA 12(5):851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12(10):1755–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbosa C, Peixeiro I, Romao L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9(8):e1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  8. Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 106(18):7507–7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21(3):452–460

    Article  CAS  PubMed  Google Scholar 

  10. Chew GL, Pauli A, Schier AF (2016) Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nat Commun 7:11663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiang MY, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 266(27):18162–18171

    CAS  PubMed  Google Scholar 

  12. Chu D, von der Haar T (2012) The architecture of eukaryotic translation. Nucleic Acids Res 40(20):10098–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crooke ST, Bennett CF (1996) Progress in antisense oligonucleotide therapeutics. Annu Rev Pharmacol Toxicol 36:107–129

    Article  CAS  PubMed  Google Scholar 

  14. Crooke ST, Vickers T, Lima W, Wu H-J (2008) Mechanisms of antisense drug action, an introduction. In: Crooke ST (ed) Antisense drug technology – principles, strategies, and application, 2nd edn. CRC Press, Boca Raton, pp 3–46

    Google Scholar 

  15. Crooke ST, Wang S, Vickers TA, Shen W, Liang X-H (2016) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35(3):230–237

    Article  Google Scholar 

  16. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, Hindy G, Masca N, Stirrups K, Kanoni S, Do R, Jun G, Hu Y, Kang HM, Xue C, Goel A, Farrall M, Duga S, Merlini PA, Asselta R, Girelli D, Olivieri O, Martinelli N, Yin W, Reilly D, Speliotes E, Fox CS, Hveem K, Holmen OL, Nikpay M, Farlow DN, Assimes TL, Franceschini N, Robinson J, North KE, Martin LW, DePristo M, Gupta N, Escher SA, Jansson JH, Van Zuydam N, Palmer CN, Wareham N, Koch W, Meitinger T, Peters A, Lieb W, Erbel R, Konig IR, Kruppa J, Degenhardt F, Gottesman O, Bottinger EP, O’Donnell CJ, Psaty BM, Ballantyne CM, Abecasis G, Ordovas JM, Melander O, Watkins H, Orho-Melander M, Ardissino D, Loos RJ, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Deloukas P, Schunkert H, Wilson JG, Kooperberg C, Rich SS, Tracy RP, Lin DY, Altshuler D, Gabriel S, Nickerson DA, Jarvik GP, Cupples LA, Reiner AP, Boerwinkle E, Kathiresan S (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371(1):22–31

    Article  PubMed  Google Scholar 

  17. Davuluri RV, Suzuki Y, Sugano S, Zhang MQ (2000) CART classification of human 5′ UTR sequences. Genome Res 10(11):1807–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deforges J, Locker N, Sargueil B (2015) mRNAs that specifically interact with eukaryotic ribosomal subunits. Biochimie 114:48–57

    Article  CAS  PubMed  Google Scholar 

  19. Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227

    Article  CAS  PubMed  Google Scholar 

  20. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1(5):347–355

    CAS  PubMed  Google Scholar 

  21. Eckstein F (2000) Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 10(2):117–121

    Article  CAS  PubMed  Google Scholar 

  22. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  23. Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25(22):4429–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391

    Article  CAS  PubMed  Google Scholar 

  25. Geary RS, Yu RZ, Siwkoswki A, Leivin AA (2008) Pharmacokinetic/pharmacodynamic properties of phosphorothioate 2′-O-(2-Methoxyethyl)-modified antisense oligonucleotides in animals and man. In: Crooke ST (ed) Antisense drug technology – principles, strategies, and applications. CRC Press, Boca Raton, pp 305–326

    Google Scholar 

  26. Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51

    Article  CAS  PubMed  Google Scholar 

  27. Gomez C, Esther Ramirez M, Calixto-Galvez M, Medel O, Rodriguez MA (2010) Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010:726045

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 270(6):2620–2627

    Article  CAS  PubMed  Google Scholar 

  29. Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812

    Article  CAS  PubMed  Google Scholar 

  30. Hoyng SA, de Winter F, Tannemaat MR, Blits B, Malessy MJ, Verhaagen J (2015) Gene therapy and peripheral nerve repair: a perspective. Front Mol Neurosci 8:32

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iacono M, Mignone F, Pesole G (2005) uAUG and uORFs in human and rodent 5′ untranslated mRNAs. Gene 349:97–105

    Article  CAS  PubMed  Google Scholar 

  33. Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33(Pt 6):1231–1241

    Article  CAS  PubMed  Google Scholar 

  34. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnstone TG, Bazzini AA, Giraldez AJ (2016) Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35(7):706–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones B (2015) Gene expression: layers of gene regulation. Nat Rev Genet 16(3):128–129

    Article  CAS  PubMed  Google Scholar 

  37. Juliano RL, Carver K (2015) Cellular uptake and intracellular trafficking of oligonucleotides. Adv Drug Deliv Rev 87:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6(3):686–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Juliano RL, Ming X, Carver K, Laing B (2014) Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 24(2):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karagyozov L, Godfrey R, Bohmer SA, Petermann A, Holters S, Ostman A, Bohmer FD (2008) The structure of the 5′-end of the protein-tyrosine phosphatase PTPRJ mRNA reveals a novel mechanism for translation attenuation. Nucleic Acids Res 36(13):4443–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kazak L, Reyes A, Duncan AL, Rorbach J, Wood SR, Brea-Calvo G, Gammage PA, Robinson AJ, Minczuk M, Holt IJ (2013) Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res 41(4):2354–2369

    Article  CAS  PubMed  Google Scholar 

  42. Kole R, Krieg AM (2015) Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107

    Article  CAS  PubMed  Google Scholar 

  43. Kozak M (1980) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell 22(1 Pt 1):7–8

    Article  CAS  PubMed  Google Scholar 

  44. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292

    Article  CAS  PubMed  Google Scholar 

  45. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kozak M (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 9(11):5134–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299(1–2):1–34

    Article  CAS  PubMed  Google Scholar 

  49. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  CAS  PubMed  Google Scholar 

  50. Lawless C, Pearson RD, Selley JN, Smirnova JB, Grant CM, Ashe MP, Pavitt GD, Hubbard SJ (2009) Upstream sequence elements direct post-transcriptional regulation of gene expression under stress conditions in yeast. BMC Genomics 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    Article  CAS  PubMed  Google Scholar 

  52. Lecosnier S, Cordier C, Simon P, Francois JC, Saison-Behmoaras TE (2011) A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation. FASEB J: Off Publ Fed Am Soc Exp Biol 25(7):2201–2210

    Article  CAS  Google Scholar 

  53. Lee S, Liu B, Lee S, Huang SX, Shen B, Qian SB (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc Natl Acad Sci U S A 109(37):E2424–E2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liang XH, Hart CE, Crooke ST (2013) Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochim Biophys Acta 1829(5):455–468

    Article  CAS  PubMed  Google Scholar 

  55. Liang XH, Shen W, Sun H, Prakash TP, Crooke ST (2014) TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Res 42(12):7819–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang XH, Sun H, Shen W, Crooke ST (2015) Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res 43(5):2927–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liang XH, Shen W, Sun H, Kinberger GA, Prakash TP, Nichols JG, Crooke ST (2016a) Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Res 44(8):3892–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liang XH, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST (2016b) Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol 34(8):875–880

    Article  CAS  PubMed  Google Scholar 

  59. Lima W, Wu H, Crooke ST (2008) The RNase H mechanism. In: Crooke ST (ed) Antisense drug technology – principles, strategies, and applications, 2nd edn. CRC Press, Boca Raton, pp 47–74

    Google Scholar 

  60. Ling J, Morley SJ, Traugh JA (2005) Inhibition of cap-dependent translation via phosphorylation of eIF4G by protein kinase Pak2. EMBO J 24(23):4094–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu PY, Xie F, Woodle MC (2005) In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet 54:117–142

    CAS  PubMed  Google Scholar 

  62. Lykke-Andersen S, Jensen TH (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16(11):665–677

    Article  CAS  PubMed  Google Scholar 

  63. Mansilla-Soto J, Riviere I, Sadelain M (2011) Genetic strategies for the treatment of sickle cell anaemia. Br J Haematol 154(6):715–727

    Article  CAS  PubMed  Google Scholar 

  64. McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58

    Article  CAS  PubMed  Google Scholar 

  65. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518(7539):409–412

    Article  CAS  PubMed  Google Scholar 

  66. Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20(23):8635–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mourich DV, Oda SK, Schnell FJ, Crumley SL, Hauck LL, Moentenich CA, Marshall NB, Hinrichs DJ, Iversen PL (2014) Alternative splice forms of CTLA-4 induced by antisense mediated splice-switching influences autoimmune diabetes susceptibility in NOD mice. Nucleic Acid Ther 24(2):114–126

    Article  CAS  PubMed  Google Scholar 

  68. Muller PP, Trachsel H (1990) Translation and regulation of translation in the yeast Saccharomyces cerevisiae. Eur J Biochem/FEBS 191(2):257–261

    Article  CAS  Google Scholar 

  69. Nomakuchi TT, Rigo F, Aznarez I, Krainer AR (2016) Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat Biotechnol 34(2):164–166

    Article  CAS  PubMed  Google Scholar 

  70. Pearson S, Jia H, Kandachi K (2004) China approves first gene therapy. Nat Biotechnol 22(1):3–4

    Article  CAS  PubMed  Google Scholar 

  71. Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J, Willis AE (2012) RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 13(4):294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV (2006) Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 20(5):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5′ UTRs requires DExH-box protein DHX29. Cell 135(7):1237–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pramono ZA, Wee KB, Wang JL, Chen YJ, Xiong QB, Lai PS, Yee WC (2012) A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene. Hum Gene Ther 23(7):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rigo F, Hua Y, Chun SJ, Prakash TP, Krainer AR, Bennett CF (2012) Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nat Chem Biol 8(6):555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rogers GW Jr, Lima WF, Merrick WC (2001) Further characterization of the helicase activity of eIF4A. Substrate specificity. J Biol Chem 276(16):12598–12608

    Article  CAS  PubMed  Google Scholar 

  77. Rossbach M (2010) Small non-coding RNAs as novel therapeutics. Curr Mol Med 10(4):361–368

    Article  CAS  PubMed  Google Scholar 

  78. Schneider PN, Olthoff JT, Matthews AJ, Houston DW (2010) Use of fully modified 2′-O-methyl antisense oligos for loss-of-function studies in vertebrate embryos. Genesis 49(3):117–123

    Article  Google Scholar 

  79. Segalat L (2007) Loss-of-function genetic diseases and the concept of pharmaceutical targets. Orphanet J Rare Dis 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  80. Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, Kinberger G, Migawa MT, Gaus H, Bhat B, Swayze EE (2008) Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs. Nucleic Acids Symp Ser (Oxf) 52:553–554

    Article  CAS  Google Scholar 

  81. Shen W, Liang XH, Crooke ST (2014) Phosphorothioate oligonucleotides can displace NEAT1 RNA and form nuclear paraspeckle-like structures. Nucleic Acids Res 42(13):8648–8662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen W, Liang XH, Sun H, Crooke ST (2015) 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res 43(9):4569–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shibahara S, Mukai S, Nishihara T, Inoue H, Ohtsuka E, Morisawa H (1987) Site-directed cleavage of RNA. Nucleic Acids Res 15(11):4403–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shimayama T, Nishikawa F, Nishikawa S, Taira K (1993) Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res 21(11):2605–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237

    Article  CAS  PubMed  Google Scholar 

  87. Suzuki Y, Holmes JB, Cerritelli SM, Sakhuja K, Minczuk M, Holt IJ, Crouch RJ (2010) An upstream open reading frame and the context of the two AUG codons affect the abundance of mitochondrial and nuclear RNase H1. Mol Cell Biol 30(21):5123–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Svoboda P (2007) Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther 9(3):248–257

    CAS  PubMed  Google Scholar 

  89. Swayze EE, Bhat B (2008) The medicinal chemistry of oligonucleotides. In: Crooke ST (ed) Antisense drug technology – principles, strategies, and applications, 2nd edn. CRC Press, Boca Raton, pp 143–182

    Google Scholar 

  90. Toth PP (2013) Emerging LDL therapies: mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol 7(3 Suppl):S6–10

    Article  PubMed  Google Scholar 

  91. Van Damme P, Gawron D, Van Criekinge W, Menschaert G (2014) N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics: MCP 13(5):1245–1261

    Article  PubMed  PubMed Central  Google Scholar 

  92. van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31(1):87–106

    Article  PubMed  Google Scholar 

  93. Vickers TA, Crooke ST (2016) Development of a quantitative BRET affinity assay for nucleic acid-protein interactions. PLoS One 11(8):e0161930

    Article  PubMed  PubMed Central  Google Scholar 

  94. von Roretz C, Di Marco S, Mazroui R, Gallouzi IE (2011) Turnover of AU-rich-containing mRNAs during stress: a matter of survival. Wiley Interdiscip Rev RNA 2(3):336–347

    Article  Google Scholar 

  95. Weidner DA, Valdez BC, Henning D, Greenberg S, Busch H (1995) Phosphorothioate oligonucleotides bind in a non sequence-specific manner to the nucleolar protein C23/nucleolin. FEBS Lett 366(2-3):146–150

    Article  CAS  PubMed  Google Scholar 

  96. Wethmar K (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA 5(6):765–778

    Article  CAS  PubMed  Google Scholar 

  97. Wethmar K, Smink JJ, Leutz A (2010) Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 32(10):885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilson JA, Richardson CD (2006) Future promise of siRNA and other nucleic acid based therapeutics for the treatment of chronic HCV. Infect Disord Drug Targets 6(1):43–56

    Article  CAS  PubMed  Google Scholar 

  99. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279(17):17181–17189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by an internal funding from Ionis Pharmaceutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liang, XH., Shen, W., Crooke, S.T. (2017). Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. In: Li, LC. (eds) RNA Activation. Advances in Experimental Medicine and Biology, vol 983. Springer, Singapore. https://doi.org/10.1007/978-981-10-4310-9_9

Download citation

Publish with us

Policies and ethics