Skip to main content

Endogenous miRNAa: miRNA-Mediated Gene Upregulation

  • Chapter
  • First Online:
RNA Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 983))

Abstract

The phenomenon of RNA activation (RNAa) was initially discovered by Li and colleagues about a decade ago. Subsequently, gene activation by exogenously expressed small activating RNA has been demonstrated in different cellular contexts by a number of laboratories. Conceivably, endogenously expressed microRNAs may also utilize RNA activation as a cellular mechanism for gene regulation, which may be dysregulated in disease states such as cancer. RNA activation can be applied to gain-of-function studies and holds great promise for disease intervention. This chapter will discuss examples of promoter-targeting microRNAs discovered in recent years and their pathophysiological relevance. I will also briefly touch upon other novel classes of microRNAs with positive gene regulatory roles, including TATA-box-activating microRNAs and enhancer-associated microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:S0092-8674(09)00008-7 [pii] 10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cernilogar FM, Burroughs AM, Lanzuolo C, Breiling A, Imhof A, Orlando V (2013) RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 8(6):e65740. doi:10.1371/journal.pone.0065740 PONE-D-12-39913 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, Liu J, Lu Y, Lopez-Berestein G, Calin GA, Sood AK, Mills GB (2016) Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep 15(7):1493–1504. doi:S2211-1247(16)30447-8 [pii] 10.1016/j.celrep.2016.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R (2013) MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 8(11):e79467. doi:10.1371/journal.pone.0079467 PONE-D-13-28574 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6(1):211–221. doi:S2211-1247(13)00758-4 [pii] 10.1016/j.celrep.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34 (Database issue):D140–144. doi:34/suppl_1/D140 [pii] 10.1093/nar/gkj112

  7. Huang V, Li LC (2012) miRNA goes nuclear. RNA Biol 9(3):269–273. doi:19354 [pii] 10.4161/rna.19354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang V, Li LC (2014) Demystifying the nuclear function of Argonaute proteins. RNA Biol 11(1):18–24. doi:27604 [pii] 10.4161/rna.27604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li LC (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848. doi:10.1371/journal.pone.0008848

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li LC (2012) Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 40(4):1695–1707. doi:gkr934 [pii] 10.1093/nar/gkr934

    Article  CAS  PubMed  Google Scholar 

  11. Huang V, Zheng J, Qi Z, Wang J, Place RF, Yu J, Li H, Li LC (2013) Ago1 interacts with RNA polymerase II and binds to the promoters of actively transcribed genes in human cancer cells. PLoS Genet 9(9):e1003821. doi:10.1371/journal.pgen.1003821 PGENETICS-D-13-00631 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844. doi:nrg2683 [pii] 10.1038/nrg2683

    Article  CAS  PubMed  Google Scholar 

  13. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3(3):166–173. doi:nchembio860 [pii] 10.1038/nchembio860

    Article  CAS  PubMed  Google Scholar 

  14. Kalantari R, Chiang CM, Corey DR (2016) Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res 44(2):524–537. doi:gkv1305 [pii] 10.1093/nar/gkv1305

    Article  CAS  PubMed  Google Scholar 

  15. Kang MR, Yang G, Place RF, Charisse K, Epstein-Barash H, Manoharan M, Li LC (2012) Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res 72(19):5069–5079. doi:0008-5472.CAN-12-1871 [pii] 10.1158/0008-5472.CAN-12-1871

    Article  CAS  PubMed  Google Scholar 

  16. Kang MR, Park KH, Yang JO, Lee CW, Oh SJ, Yun J, Lee MY, Han SB, Kang JS (2016) miR-6734 Up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One 11(8):e0160961. doi:10.1371/journal.pone.0160961 PONE-D-16-17979 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi:1138341 [pii] 10.1126/science.1138341

    Article  CAS  PubMed  Google Scholar 

  18. Kawasaki H, Taira K (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431(7005):211–217. doi:10.1038/nature02889 nature02889 [pii] (retracted)

  19. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116(6):779–793. doi:S009286740400248X [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103(46):17337–17342. doi:0607015103 [pii] 10.1073/pnas.0607015103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li C, Jiang W, Hu Q, Li LC, Dong L, Chen R, Zhang Y, Tang Y, Thrasher JB, Liu CB, Li B (2016) Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget 7(16):22893–22910. doi:8290 [pii] 10.18632/oncotarget.8290

    PubMed  PubMed Central  Google Scholar 

  22. Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ, Qu LH (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 5(5):e10563. doi:10.1371/journal.pone.0010563

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA (2013) The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev 27(23):2543–2548. doi:27/23/2543 [pii] 10.1101/gad.224170.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopez P, Wagner KD, Hofman P, Van Obberghen E (2016) RNA activation of the vascular endothelial growth factor gene (VEGF) promoter by double-stranded RNA and hypoxia: role of noncoding VEGF promoter transcripts. Mol Cell Biol 36(10):1480–1493. doi:MCB.01096-15 [pii] 10.1128/MCB.01096-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsui M, Corey DR (2016) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179. doi:nrd.2016.117 [pii] 10.1038/nrd.2016.117

    Article  PubMed  Google Scholar 

  26. Matsui M, Sakurai F, Elbashir S, Foster DJ, Manoharan M, Corey DR (2010) Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem Biol 17(12):1344–1355. doi:S1074-5521(10)00402-3 [pii] 10.1016/j.chembiol.2010.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR, Janowski BA (2013) Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res 41(22):10086–10109. doi:gkt777 [pii] 10.1093/nar/gkt777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meng X, Jiang Q, Chang N, Wang X, Liu C, Xiong J, Cao H, Liang Z (2016) Small activating RNA binds to the genomic target site in a seed-region-dependent manner. Nucleic Acids Res 44(5):2274–2282. doi:gkw076 [pii] 10.1093/nar/gkw076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305(5688):1289–1292. doi:10.1126/science.1101372 1101372 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Nakama M, Kawakami K, Kajitani T, Urano T, Murakami Y (2012) DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation. Genes Cells 17(3):218–233. doi:10.1111/j.1365-2443.2012.01583.x

    Article  CAS  PubMed  Google Scholar 

  31. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471. doi:S1097-2765(08)00328-6 [pii] 10.1016/j.molcel.2008.05.001

    Article  PubMed  Google Scholar 

  32. Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM, Waddell MB, Ridout G, Naeve D, Leuze M, LoCascio PF, Panetta JC, Wilkinson MR, Pui CH, Naeve CW, Uberbacher EC, Bonten EJ, Evans WE (2016) MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression. PLoS Comput Biol 12(2):e1004744. doi:10.1371/journal.pcbi.1004744 PCOMPBIOL-D-15-00361 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105(5):1608–1613. doi:0707594105 [pii] 10.1073/pnas.0707594105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Place RF, Wang J, Noonan EJ, Meyers R, Manoharan M, Charisse K, Duncan R, Huang V, Wang X, Li LC (2012) Formulation of small activating RNA into lipidoid nanoparticles inhibits xenograft prostate tumor growth by inducing p21 expression. Mol Ther Nucleic Acids 1:e15. doi:mtna20125 [pii] 10.1038/mtna.2012.5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Portnoy V, Lin SH, Li KH, Burlingame A, Hu ZH, Li H, Li LC (2016) saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 26(3):320–335. doi:cr201622 [pii] 10.1038/cr.2016.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reebye V, Saetrom P, Mintz PJ, Huang KW, Swiderski P, Peng L, Liu C, Liu X, Lindkaer-Jensen S, Zacharoulis D, Kostomitsopoulos N, Kasahara N, Nicholls JP, Jiao LR, Pai M, Spalding DR, Mizandari M, Chikovani T, Emara MM, Haoudi A, Tomalia DA, Rossi JJ, Habib NA (2014) Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 59(1):216–227. doi:10.1002/hep.26669

    Article  CAS  PubMed  Google Scholar 

  37. Ren S, Kang MR, Wang J, Huang V, Place RF, Sun Y, Li LC (2013) Targeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth. Prostate 73(14):1591–1601. doi:10.1002/pros.22709

    Article  CAS  PubMed  Google Scholar 

  38. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. doi:91/3/827 [pii] 10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, Janowski BA (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15(8):842–848. doi:nsmb.1444 [pii] 10.1038/nsmb.1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498. doi:10.1016/j.ydbio.2004.02.019 S0012160604001381 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional regulation mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta 1839(11):1079–1083. doi:S1874-9399(14)00204-1 [pii] 10.1016/j.bbagrm.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  42. Turner MJ, Jiao AL, Slack FJ (2014) Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. elegans. Cell Cycle 13(5):772–781. doi:27679 [pii] 10.4161/cc.27679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang A, Yoshimi N, Ino N, Tanaka T, Mori H (1997) Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol 123(2):124–127

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, Huang J, Li LC (2010) Prognostic value and function of KLF4 in prostate cancer: RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer Res 70 (24):10182–10191. doi:70/24/10182 [pii] 10.1158/0008-5472.CAN-10-2414

  45. Wang X, Wang J, Huang V, Place RF, Li LC (2012) Induction of NANOG expression by targeting promoter sequence with small activating RNA antagonizes retinoic acid-induced differentiation. Biochem J 443(3):821–828. doi:BJ20111491 [pii] 10.1042/BJ20111491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang C, Chen Z, Ge Q, Hu J, Li F, Xu H, Ye Z, Li LC (2014) Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett 588(24):4654–4664. doi:S0014-5793(14)00786-8 [pii] 10.1016/j.febslet.2014.10.037

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Huang V, Ye L, Barcena A, Lin G, Lue TF, Li LC (2015) Identification of small activating RNAs that enhance endogenous OCT4 expression in human mesenchymal stem cells. Stem Cells Dev 24(3):345–353. doi:10.1089/scd.2014.0290

    Article  CAS  PubMed  Google Scholar 

  48. Wang B, Sun J, Shi J, Guo Q, Tong X, Zhang J, Hu N, Hu Y (2016a) Small-activating RNA can change nucleosome positioning in human fibroblasts. J Biomol Screen 21(6):634–642. doi:1087057116637562 [pii] 10.1177/1087057116637562

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Tang K, Li Z, Chen Z, Xu H, Ye Z (2016b) Targeted p21(WAF1/CIP1) activation by miR-1236 inhibits cell proliferation and correlates with favorable survival in renal cell carcinoma. Urol Oncol 34(2):59 e23–34. doi:S1078-1439(15)00413-5 [pii] 10.1016/j.urolonc.2015.08.014

  50. Weaver BA, Cleveland DW (2008) The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell 14(6):431–433. doi:S1535-6108(08)00377-2 [pii] 10.1016/j.ccr.2008.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, Peng L, Zhao L, Peng S, Xiao Y, Dong S, Cao J, Yu W (2016) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 0. doi:10.1080/15476286.2015.1112487

  52. Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res 39(13):5682–5691. doi:gkr155 [pii] 10.1093/nar/gkr155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Fan M, Geng G, Liu B, Huang Z, Luo H, Zhou J, Guo X, Cai W, Zhang H (2014a) A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology 11:23. doi: 10.1186/1742-4690-11-23 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Fan M, Zhang X, Huang F, Wu K, Zhang J, Liu J, Huang Z, Luo H, Tao L, Zhang H (2014b) Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA 20(12):1878–1889. doi:rna.045633.114 [pii] 10.1261/rna.045633.114

  55. Zhao M, Kim YT, Yoon BS, Kim SW, Kang MH, Kim SH, Kim JH, Kim JW, Park YW (2006) Expression profiling of cyclin B1 and D1 in cervical carcinoma. Exp Oncol 28(1):44–48. doi:25/494 [pii]

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, V. (2017). Endogenous miRNAa: miRNA-Mediated Gene Upregulation. In: Li, LC. (eds) RNA Activation. Advances in Experimental Medicine and Biology, vol 983. Springer, Singapore. https://doi.org/10.1007/978-981-10-4310-9_5

Download citation

Publish with us

Policies and ethics