Skip to main content

Enhancing Neuronogenesis and Counteracting Neuropathogenic Gene Haploinsufficiencies by RNA Gene Activation

  • Chapter
  • First Online:
RNA Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 983))

  • 2250 Accesses

Abstract

Small activating RNAs (saRNAs), targeting endogenous genes and stimulating their transcription, are a promising tool for implementing a variety of neurotherapeutic strategies. Among these there is the stimulation of select histogenetic subroutines for purposes of cell-based brain repair, as well as the therapeutic treatment of gene expression deficits underlying severe neurological disorders.

We employed RNA activation (RNAa) to transactivate the Emx2 transcription factor gene in embryonic cortico-cerebral precursor cells. This led to enhanced self-renewal, delayed differentiation, and reduced death of neuronally committed precursors, resulting in a remarkable expansion of the neuronogenic precursors pool. These results are of paramount interest for purposes of gene-promoted brain repair. As such, RNAa makes therapeutic stimulation of neuronogenesis via Emx2 overexpression a feasible goal, preventing the drawbacks of exogenous gene copies introduction.

Moreover, we employed RNAa to achieve a gentle transactivation of the Foxg1 transcription factor gene, specifically in cortico-cerebral cells. This manipulation led to an appreciable biological outcome, while complying with endogenous gene tuning linked to early central nervous system regionalization and late activity of neocortical projection neurons. Foxg1-activating miRNAs stimulated RNApolII recruitment, possibly via Ago1. One of them worked promisingly in vivo. As such, RNAa can be a valuable approach for therapeutic treatment of the FOXG1-haploinsufficiency-linked variant of the Rett syndrome. Remarkably, hemizygosity for specific genes and polygenic chromosomal segments underlies a huge number of neuropathological entities for which no cure is presently available. Based on the results reported above, RNAa might be a simple and scalable approach for fixing this class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barøy T, Misceo D, Strømme P, Stray-Pedersen A, Holmgren A, Rødningen OK et al (2013) Haploinsufficiency of two histone modifier genes on 6p22.3, ATXN1 and JARID2, is associated with intellectual disability. Orphanet J Rare Dis 8(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beerli RR, Dreier B, Barbas CF 3rd (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brancaccio M, Pivetta C, Granzotto M, Filippis C, Mallamaci A (2010) Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 28(7):1206–1218

    CAS  PubMed  Google Scholar 

  4. Burns TC, Verfaillie CM, Low WC (2009) Stem cells for ischemic brain injury: a critical review. J Comp Neurol 515(1):125–144

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carvill GL, Mefford HC (2013) Microdeletion syndromes. Curr Opin Genet Dev 23(3):232–239

    Article  CAS  PubMed  Google Scholar 

  6. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW et al (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chu Y, Yue X, Younger ST, Janowski BA, Corey DR (2010) Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res 38(21):7736–7748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548

    Article  CAS  PubMed  Google Scholar 

  9. Decipher database 1q21.1 recurrent microduplication syndrome, accessible at: https://decipher.sanger.ac.uk/syndrome/67#overview

  10. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diodato A, Pinzan M, Granzotto M, Mallamaci A (2013) Promotion of cortico-cerebral precursors expansion by artificial pri-miRNAs targeted against the Emx2 locus. Curr Gene Ther 13(2):152–161

    Article  CAS  PubMed  Google Scholar 

  12. Falcone C, Filippis C, Granzotto M, Mallamaci A (2015) Emx2 expression levels in NSCs modulate astrogenesis rates by regulating E gf R and F gf9: Emx2 Limits Astrogenesis Repressing EgfR and Fgf9. Glia 63(3):412–422

    Article  PubMed  Google Scholar 

  13. Fimiani C, Goina E, Mallamaci A (2015) Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res 43(16):7850–7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fimiani C, Goina E, Su Q, Gao G, Mallamaci A (2016) RNA activation of haploinsufficient Foxg1 gene in murine neocortex. Sci Rep 6:39311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gangemi RMR, Daga A, Muzio L, Marubbi D, Cocozza S, Perera M et al (2006) Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci 23(2):325–334

    Article  PubMed  Google Scholar 

  17. Gasiunas G, Siksnys V (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: holy Grail of genome editing? Trends Microbiol 21(11):562–567

    Article  CAS  PubMed  Google Scholar 

  18. Geiβler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens S-E et al (2011) Transcriptional activators of human genes with programmable DNA-specificity . Shiu S-H, editor. PLoS One 6(5):e19509

    Article  PubMed Central  Google Scholar 

  19. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53(12):2067–2078

    Article  CAS  PubMed  Google Scholar 

  21. Gustincich S, Zucchelli S, Mallamaci A (2016) The Yin and Yang of nucleic acid-based therapy in the brain. Prog Neurobiol. epub ahead of print

    Google Scholar 

  22. Hamasaki T, Leingärtner A, Ringstedt T, O’Leary DDM (2004) EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43(3):359–372

    Article  CAS  PubMed  Google Scholar 

  23. Hanashima C, Li SC, Shen L, Lai E, Fishell G (2004) Foxg1 suppresses early cortical cell fate. Science 303(5654):56–59

    Article  CAS  PubMed  Google Scholar 

  24. Hanashima C, Fernandes M, Hebert JM, Fishell G (2007) The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci 27(41):11103–11111

    Article  CAS  PubMed  Google Scholar 

  25. Hatini V, Tao W, Lai E (1994) Expression of winged helix genes, BF-1 and BF-2, define adjacent domains within the developing forebrain and retina. J Neurobiol 25(10):1293–1309

    Article  CAS  PubMed  Google Scholar 

  26. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu J, Lei Y, Wong W-K, Liu S, Lee K-C, He X et al (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42(7):4375–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z et al (2012) Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 40(4):1695–1707

    Article  CAS  PubMed  Google Scholar 

  29. Jiao AL, Slack FJ (2014) RNA-mediated gene activation. Epigenetics 9(1):27–36

    Article  CAS  PubMed  Google Scholar 

  30. Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim H, Kim J-S (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334

    Article  CAS  PubMed  Google Scholar 

  32. Lal D, Ruppert A-K, Trucks H, Schulz H, De Kovel CG, Kasteleijn-Nolst Trenité D et al (2015) Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies, Copenhaver GP, editor. PLoS Genet 11(5):e1005226

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee BH, Smith T, Paciorkowski AR (2015) Autism spectrum disorder and epilepsy: disorders with a shared biology. Epilepsy Behav 47:191–201

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li L-C (2014) Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics 9(1):45–52

    Article  CAS  PubMed  Google Scholar 

  35. Li L-C, Okino ST, Zhao H, Pookot D, Place RF, Urakami S et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103(46):17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN et al (2013) The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev 27(23):2543–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA–guided activation of endogenous human genes. Nat Methods 10(10):977–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y et al (2010) MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 116(24):5637–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martynoga B, Morrison H, Price DJ, Mason JO (2005) Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113–127

    Article  CAS  PubMed  Google Scholar 

  40. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsui M, Sakurai F, Elbashir S, Foster DJ, Manoharan M, Corey DR (2010) Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem Biol 17(12):1344–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S et al (2013) Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res 41(22):10086–10109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, Onori A et al (2007) Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One 2(8):e774

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7(7):540–546

    Article  CAS  PubMed  Google Scholar 

  45. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  PubMed  Google Scholar 

  46. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP et al (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30(5):453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris KV, Santoso S, Turner A-M, Pastori C, Hawkins PG (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4(11):e1000258

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muzio L, Mallamaci A (2005) Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 25(17):4435–4441

    Article  CAS  PubMed  Google Scholar 

  49. Muzio L, Soria JM, Pannese M, Piccolo S, Mallamaci A (2005) A mutually stimulating loop involving emx2 and canonical wnt signalling specifically promotes expansion of occipital cortex and hippocampus. Cereb Cortex 15(12):2021–2028

    Article  CAS  PubMed  Google Scholar 

  50. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69(3):175–186

    Article  CAS  PubMed  Google Scholar 

  51. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR et al (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10(10):973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Place RF, Li L-C, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci 105(5):1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Portnoy V, Huang V, Place RF, Li L-C (2011) Small RNA and transcriptional upregulation. Wiley Interdiscip Rev RNA 2(5):748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Portnoy V, Lin SHS, Li KH, Burlingame A, Hu Z-H, Li H et al (2016) saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 26(3):320–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raciti M, Granzotto M, Duc MD, Fimiani C, Cellot G, Cherubini E et al (2013) Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes. Mol Cell Neurosci 57:42–53

    Article  CAS  PubMed  Google Scholar 

  56. Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genitourin Med 7(1):93

    Google Scholar 

  57. Sansom SN, Griffiths DS, Faedo A, Kleinjan D-J, Ruan Y, Smith J et al (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5(6):e1000511

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwartz JC, Younger ST, Nguyen N-B, Hardy DB, Monia BP, Corey DR et al (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15(8):842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Silva AM, Brown JM, Buckle VJ, Wade-Martins R, Lufino MMP (2015) Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells. Hum Mol Genet 24(12):3457–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Snowden AW, Zhang L, Urnov F, Dent C, Jouvenot Y, Zhong X et al (2003) Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res 63(24):8968–8976

    CAS  PubMed  Google Scholar 

  61. Sohn JH, Yeh B-I, Choi J-W, Yoon J, Namkung J, Park K-K et al (2010) Repression of human telomerase reverse transcriptase using artificial zinc finger transcription factors. Mol Cancer Res 8(2):246–253

    Article  CAS  PubMed  Google Scholar 

  62. Song M, Kim Y-H, Kim J-S, Kim H (2014) Genome engineering in human cells. Methods Enzymol 546:93–118

    Article  CAS  PubMed  Google Scholar 

  63. Takizawa T, Meshorer E (2008) Chromatin and nuclear architecture in the nervous system. Trends Neurosci 31(7):343–352

    Article  CAS  PubMed  Google Scholar 

  64. Turner A-M, Morris K (2010) Controlling transcription with noncoding RNAs in mammalian cells. BioTechniques 48(6):ix–xvi

    Article  CAS  PubMed  Google Scholar 

  65. Verrotti A, Carelli A, Di Genova L, Striano P (2015) Epilepsy and chromosome 18 abnormalities: a review. Seizure 32:78–83

    Article  PubMed  Google Scholar 

  66. Wilson KA, Chateau ML, Porteus MH (2013) Design and development of artificial zinc finger transcription factors and zinc finger nucleases to the hTERT locus. Mol Ther Nucleic Acids 2:e87

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yue X, Schwartz JC, Chu Y, Younger ST, Gagnon KT, Elbashir S et al (2010) Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini. Nat Chem Biol 6(8):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Fan M, Zhang X, Huang F, Wu K, Zhang J et al (2014) Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA 20(12):1878–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks all collaborators who contributed to the two primary studies referred to in this chapter [11, 14], as well as the funding bodies providing financial support for their implementation (including Fondation Jérôme Lejeune grant 1176-MA2013A, Fondazione Telethon grant GGP13034, and SISSA intramurary funding to the author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Mallamaci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mallamaci, A. (2017). Enhancing Neuronogenesis and Counteracting Neuropathogenic Gene Haploinsufficiencies by RNA Gene Activation. In: Li, LC. (eds) RNA Activation. Advances in Experimental Medicine and Biology, vol 983. Springer, Singapore. https://doi.org/10.1007/978-981-10-4310-9_2

Download citation

Publish with us

Policies and ethics