Skip to main content

Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”

  • Chapter
  • First Online:
Book cover Exercise for Cardiovascular Disease Prevention and Treatment

Abstract

During last decades, most studies have examined the exercise-induced remodeling defined as “athlete’s heart”. During exercise, there is an increased cardiac output that causes morphological, functional, and electrical modification of the cardiac chambers. The cardiac remodeling depends also on the type of training, age, sex, ethnicity, genetic factors, and body size. The two main categories of exercise, endurance and strength, determine different effects on the cardiac remodeling. Even if most sport comprise both strength and endurance exercise, determining different scenarios of cardiac adaptation to the exercise. The aim of this paper is to assemble the current knowledge about physiologic and pathophysiologic response of both the left and the right heart in highly trained athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MET:

metabolic exercise training

LV:

left ventricle

RV:

right ventricle

LA:

left atrium

RA:

right atrium

AoR:

aortic root

ECG:

electrocardiography

HCM:

hypertrophic cardiomyopathy

DCM:

dilated cardiomyopathy

ARVC:

arrhytmogenic right ventricular cardiomyopathy

TDI:

tissue Doppler imaging

RBBB:

right bundle branch block

TAPSE:

tricuspid annular plane systolic excursion

PASP:

pulmonary arterial systolic pressure

CMR:

cardiac magnetic resonance

PTAC:

pulmonary transit of agitated contrast

BSA:

body surface area

LAVI:

left atrial volume indexed

TNF-α:

tumor necrosis factor-α

STE:

speckle tracking echocardiography

BAV:

bicuspid aortic valve

References

  1. Shiroma EJ, Lee IM (2010) Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 122(7):743–752

    Article  PubMed  Google Scholar 

  2. Galderisi M, Cardim N, D’Andrea A et al (2015) The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Card 16(4):353

    Google Scholar 

  3. Maron BJ, Pelliccia A (2006) The heart of trained athletes cardiac remodeling and the risks of sports, including sudden death. Circulation 114(15):1633–1644

    Article  PubMed  Google Scholar 

  4. Noseworthy PA, Weiner R, Kim J et al (2011) Early repolarization pattern in competitive athletes: clinical correlates and the effects of exercise training. Circ Arrhythm Electrophisiol 4(4):432–440

    Article  Google Scholar 

  5. Weiner RB, Hutter AM, Wang F et al (2011) Performance of the 2010 European society of cardiology criteria for ECG interpretation in athletes. Heart 97(19):1573–1577

    Article  PubMed  Google Scholar 

  6. Kim JH, Noseworthy PA, McCarty D et al (2011) Significance of electrocardiographic right bundle branch block in trained athletes. Am J Cardiol 107(7):1083–1089

    Article  PubMed  Google Scholar 

  7. Thomas L, Levett K, Boyd A et al (2002) Compensatory changes in atrial volumes with normal aging: is atrial enlargement inevitable? J Am Coll Cardiol 40(9):1630–1635

    Article  PubMed  Google Scholar 

  8. Baggish AL, Yared K, Weiner RB et al (2010) Differences in cardiac parameters among elite rowers and subelite rowers. Med Sci Sports Exerc 42(6):1215–1220

    PubMed  Google Scholar 

  9. D'Andrea A, La Gerche A, Golia E et al (2015) Right heart structural and functional remodeling in athletes. Echocardiography 32(Suppl 1):S11–S22

    Article  PubMed  Google Scholar 

  10. La Gerche A, Burns AT, Mooney DJ et al (2012) Exercise induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006

    Article  PubMed  Google Scholar 

  11. Neilan TG, Januzzi JL, Lee-Lewandrowski E et al (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114(22):2325–2333

    Article  PubMed  Google Scholar 

  12. Oxborough D, Shave R, Warburton D et al (2011) Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise: exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging 4(3):253–263

    Article  PubMed  Google Scholar 

  13. Neilan TG, Yoerger DM, Douglas PS et al (2006) Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J 27(9):1079–1084

    Article  PubMed  Google Scholar 

  14. La Gerche A, Jurcut R, Voigt JU (2010) Right ventricular function by strain echocardiography. Curr Opin Cardiol 25(5):430–436

    Article  PubMed  Google Scholar 

  15. Douglas PS, O’Toole ML, Hiller WDB et al (1990) Different effects of prolonged exercise on the right and left ventricles. J Am Coll Cardiol 15(1):64–69

    Article  CAS  PubMed  Google Scholar 

  16. Mousavi N, Czarnecki A, Kumar K et al (2009) Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol 103(10):1467–1472

    Article  PubMed  Google Scholar 

  17. Trivax JE, Franklin BA, Goldstein JA et al (2010) Acute cardiac effects of marathon running. J Appl Physiol 108(5):1148–1153

    Article  CAS  PubMed  Google Scholar 

  18. La Gerche A, Heidbüchel H, Burns AT et al (2011) Disproportionate exercise load and remodeling of the Athlete’s right ventricle. Med Sci Sports Exerc 43(6):974–981

    Article  PubMed  Google Scholar 

  19. Kovacs G, Berghold A, Scheidl S et al (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34(4):888–894

    Article  CAS  PubMed  Google Scholar 

  20. La Gerche A, oIsaac AI, Burns AT et al (2010) Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise. J Appl Physiol 109(5):1307–1317

    Article  PubMed  Google Scholar 

  21. Utomi V, Oxborough D, Whyte GP et al (2013) Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart 99(23):1727–1733

    Article  PubMed  Google Scholar 

  22. D’Andrea A, Caso P, Sarubbi B et al (2003) Right ventricular myocardial adaptation to different training protocols in top-level athletes. Echocardiography 20(4):329–336

    Article  PubMed  Google Scholar 

  23. D’Andrea A, Naeije R, D’Alto M et al (2011) Range in pulmonary artery systolic pressure among highly trained athletes. Chest 139(4):788–794

    Article  PubMed  Google Scholar 

  24. Teske AJ, Prakken NH, De Boeck BW et al (2009) Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes. Eur Heart J 30(8):969–977

    Article  PubMed  Google Scholar 

  25. La Gerche A, Burns AT, D’Hooge J et al (2012) Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr 25(3):253–262

    Article  PubMed  Google Scholar 

  26. Baggish AL, Wang F, Weiner RB et al (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol 104(4):1121–1128

    Article  PubMed  Google Scholar 

  27. Caso P, D’Andrea A, Galderisi M et al (2000) Pulsed Doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am J Cardiol 85(9):1131–1136

    Article  CAS  PubMed  Google Scholar 

  28. Erol MK, Karakelleoglu S (2002) Assessment of right heart function in the athlete’s heart. Heart Vessel 16(5):175–180

    Article  Google Scholar 

  29. Pluim BM, Zwinderman AH, van der Laarse A et al (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101(3):336–342

    Article  CAS  PubMed  Google Scholar 

  30. D’Andrea A, Bossone E, Radmilovic J et al (2016) Exercise-induced atrial remodeling. The forgotten chamber. Cardiol Clin 34(4):557–565

    Article  PubMed  Google Scholar 

  31. Brosnan M, La Gerche A, Kalman J et al (2014) Comparison of frequency of significant electrocardiographic abnormalities in endurance versus non-endurance athletes. Am J Cardiol 113(9):1567–1573

    Article  PubMed  Google Scholar 

  32. Grünig E, Henn P, D’Andrea A et al (2013) Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging 6(1):117–124

    Article  PubMed  Google Scholar 

  33. D'Andrea A, Riegler L, Rucco MA et al (2013) Left atrial volume index in healthy subjects: clinical and echocardiographic correlates. Echocardiography 30(9):1001–1007

    PubMed  Google Scholar 

  34. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713

    Article  PubMed  Google Scholar 

  35. Zaidi A, Ghani S, Sharma R et al (2013) Physiological right ventricular adaptation in elite athletes of African and afro-Caribbean origin. Circulation 127(17):1783–1792

    Article  PubMed  Google Scholar 

  36. Inaba Y, Yuda S, Kobayashi N et al (2005) Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr 18(7):729–736

    Article  PubMed  Google Scholar 

  37. D’Andrea A, Caso P, Romano S et al (2007) Different effects of cardiac resynchronization therapy on left atrial function in patients with either idiopathic or ischaemic dilated cardiomyopathy: a two-dimensional speckle strain study. Eur Heart J 28(22):2738–2748

    Article  PubMed  Google Scholar 

  38. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39

    Article  PubMed  Google Scholar 

  39. Pelliccia A, Maron BJ, Di Paolo FM et al (2005) Prevalence and clinical significance of left atrial remodeling in competitive athletes. J Am Coll Cardiol 46(4):690–696

    Article  PubMed  Google Scholar 

  40. D’Andrea A, Riegler L, Cocchia R et al (2010) Left atrial volume index in highly trained athletes. Am Heart J 159(6):1155–1161

    Article  PubMed  Google Scholar 

  41. Nistri S, Galderisi M, Ballo P et al (2011) Determinants of echocardiographic left atrial size: implications for normalcy. Eur J Echocardiogr 12(11):826–833

    Article  PubMed  Google Scholar 

  42. Mose’n H, Steding-Ehrenborg K (2014) Atrial remodelling isless pronounced in female endurance-trained athletes compared with that in male athletes. Scand Cardiovasc J 48 (1):20–26

    Google Scholar 

  43. D’Andrea A, De Corato G, Scarafile R et al (2008) Left atrial myocardial function in either physiological or pathological left ventricular hypertrophy: a two dimensional speckle strain study. Br J Sports Med 42(8):696–702

    Article  PubMed  Google Scholar 

  44. Karjalainen J, Kujala UM, Kaprio J et al (1998) Lone atrial fibrillation in vigorously exercising middle aged men: case-control study. BMJ 316(7147):1784–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Molina L, Mont L, Marrugat J et al (2008) Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace 10(5):618–623

    Article  PubMed  Google Scholar 

  46. Mont L, Tamborero D, Elosua R et al (2008) Physical activity, height and left atrial size are independent risk factors for lone atrial fibrillation in middle-aged healthy individuals. Europace 10(1):15–20

    Article  PubMed  Google Scholar 

  47. Mozaffarian D, Furberg CD, Psaty BM et al (2008) Physical activity and incidence of atrial fibrillation in older adults. The cardiovascular health study. Circulation 118(8):800–807

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly. Eur Heart J 36(23):1445–1453

    Article  PubMed  Google Scholar 

  49. La Gerche A, Inder WJ, Roberts TJ et al (2015) Relationship between inflammatory cytokines and indices of cardiac dysfunction following intense endurance exercise. PLoS One 10(6):e0130031

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sugama K, Suzuki K, Yoshitani K et al (2015) Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise. Exerc Immunol Rev 21:130–142

    PubMed  Google Scholar 

  51. Aschar-Sobbi R, Izaddoustdar F, Korogyi AS et al (2015) Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFa. Nat Commun 6:6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coumel P (1994) Paroxysmal atrial fibrillation: a disorder of autonomic tone? Eur heart J 15 Suppl a:9–16

    Google Scholar 

  53. Elliott AD, Mahajan R, MD, Lau DH, et al (2016) Atrial fibrillation in endurance athletes from mechanism to management. Cardiol Clin 34 (4):567–578

    Google Scholar 

  54. Morganroth J, Maron BJ, Henry WL et al (1975) Comparative left ventricular dimensions in trained athletes. Ann Intern Med 82(4):521–524

    Article  CAS  PubMed  Google Scholar 

  55. Lang RM, Bierig M, Devereux RB, et al (2006) Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjuction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Eur J Echocardiogr 7 (2):79–108

    Google Scholar 

  56. Makan J, Sharma S, Firoozi S et al (2005) Physiological upper limits of ventricular cavity size in highly trained adolescent athletes. Heart 91(4):495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma S, Maron BJ, Whyte G et al (2002) Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol 40(8):1431–1436

    Article  PubMed  Google Scholar 

  58. Sheikh N, Papadakis M, Carre F et al (2013) Cardiac adaptation to exercise in adolescent athletes of African ethnicity: an emergent elite athletic population. Br J Sports Med 47(9):585–592

    Article  PubMed  Google Scholar 

  59. Richand V, Lafitte S, Reant P et al (2007) An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy. Am J Cardiol 100(1):128–132

    Article  PubMed  Google Scholar 

  60. Breuckmann F, Lehmann N, Ladd S et al (2009) Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology 251(1):50–57

    Article  PubMed  Google Scholar 

  61. Mac Dougall JD, McKelvie RS, Moroz DE et al (1992) Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol 73(4):1590–1597

    CAS  Google Scholar 

  62. D'Andrea A, Cocchia R, Riegler L et al (2010) Aortic root dimensions in elite athletes. Am J Cardiol 105(11):1629–1634

    Article  PubMed  Google Scholar 

  63. Iskandar A, Thompson PD (2013) A meta-analysis of aortic root size in elite athletes. Circulation 127(7):791–798

    Article  PubMed  Google Scholar 

  64. Galanti G, Stefani L, Toncelli L et al (2010) Effects of sports activity in athletes with bicuspid aortic valve and mild aortic regurgitation. Br J Sports Med 44(4):275–279

    Article  CAS  PubMed  Google Scholar 

  65. Tadros TM, Klein MD, Shapira OM (2009) Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119(6):880–890

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello D’Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

D’Andrea, A. et al. (2017). Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_2

Download citation

Publish with us

Policies and ethics