Skip to main content

Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 999))

Abstract

Cardiomyopathy is a serious complication of diabetes mellitus and occurs independently of coronary artery disease or hypertension. It manifests as systolic/diastolic dysfunction and hypertrophy of the left ventricle and can lead to heart failure. Hyperglycemia can trigger a series of maladaptive stimuli and result in cardiac hypertrophy, fibrosis and reduced performance and contractility. The pathogenesis of diabetic cardiomyopathy is a multifactorial process that includes metabolic derangements such as increased oxidative stress, and altered non-oxidative glucose pathways and lipid metabolism. Exercise is a useful non-pharmacological strategy effective in the reduction of diabetes and obesity risk factors, and improvement of antioxidant defenses, mitochondrial function and physiological cardiac growth. It can amend multiple metabolic derangements and alterations in the diabetic heart. Therefore, figuring out the underlying mechanisms of exercise-induced beneficial effects could help to develop new treatment strategies for diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rydén L, Grant PJ, Anker SD et al (2013) ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of diabetes (EASD). Eur Heart J 34:3035–3087

    Article  PubMed  Google Scholar 

  2. Huynh K, Bernardo BC, McMullen JR et al (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142:375–415

    Article  CAS  PubMed  Google Scholar 

  3. Rubler S, Dlugash J, Yuceoglu ZY et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  4. Palmieri V, Bella JN, Arnett DK et al (2001) Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: hypertension genetic epidemiology network (HyperGEN) study. Circulation 103:102–107

    Article  CAS  PubMed  Google Scholar 

  5. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care 26:2949–2951

    Article  PubMed  Google Scholar 

  7. Movahed MR, Hashemzadeh M, Jamal MM (2005) Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol 105:315–318

    Article  PubMed  Google Scholar 

  8. Zanuso S, Jimenez A, Pugliese G et al (2010) Exercise for the management of type 2 diabetes: a review of the evidence. Acta Diabetol 47:15–22

    Article  PubMed  Google Scholar 

  9. Lancaster GI, Febbraio MA (2014) The immunomodulating role of exercise in metabolic disease. Trends Immunol 35:262–269

    Article  CAS  PubMed  Google Scholar 

  10. Golbidi S, Laher I (2011) Molecular mechanisms in exercise induced cardioprotection. Cardiol Res Pract 2011:972807

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dunstan DW, Daly RM, Owen N et al (2002) High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 25:1729–1736

    Article  PubMed  Google Scholar 

  12. Broderick TL, Poirier P, Gillis M (2005) Exercise training restores abnormal myocardial glucose utilization and cardiac function in diabetes. Diabetes Metab Res Rev 21:44–50

    Article  CAS  PubMed  Google Scholar 

  13. Brassard P, Legault S, Garneau C et al (2007) Normalization of diastolic dysfunction in type 2 diabetics after exercise training. Med Sci Sports Exerc 39:1896–1901

    Article  PubMed  Google Scholar 

  14. Tjonna AE, Lee SJ, Rognmo O et al (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118:346–354

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hafstad AD, Boardman NT, Lund J et al (2011) High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol 111:1235–1241

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues B, Jorge L, Mostarda CT et al (2012) Aerobic exercise training delays cardiac dysfunction and improves autonomic control of circulation in diabetic rats undergoing myocardial infarction. J Cardiac Fail 18:734–744

    Article  Google Scholar 

  17. Byrkjeland R, Njerve IU, Anderssen S et al (2015) Effects of exercise training on HbA1c and VO2peak in patients with type 2 diabetes and coronary artery disease: a randomised clinical trial. Diabetes Vasc Dis Res 12:325–333

    Article  Google Scholar 

  18. Tabet JY, Meurin P, Driss AB et al (2009) Benefits of exercise training in chronic heart failure. Arch Cardiovasc Dis 102:721–730

    Article  PubMed  Google Scholar 

  19. Ellison GM, Waring CD, Vicinanza C et al (2012) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart Br Card Soc 98:5–10

    CAS  Google Scholar 

  20. Hafstad AD, Boardman N, Aasum E (2015) How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 22(17):1587–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belke DD, Larsen TS, Gibbs EM et al (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    CAS  PubMed  Google Scholar 

  22. Peterson LR, Herrero P, Schechtman KB et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196

    Article  PubMed  Google Scholar 

  23. Aasum E, Hafstad AD, Severson DL et al (2003) Agedependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441

    Article  CAS  PubMed  Google Scholar 

  24. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiu HC, Kovacs A, Blanton RM et al (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233

    Article  CAS  PubMed  Google Scholar 

  26. Fauconnier J, Andersson DC, Zhang SJ et al (2007) Effects of palmitate on ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142

    Article  CAS  PubMed  Google Scholar 

  27. Tocchetti CG, Caceres V, Stanley BA et al (2012) GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 61:3094–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harmancey R, Vasquez HG, Guthrie PH et al (2013) Decreased long-chain fatty acid oxidation impairs postischemic recovery of the insulin-resistant rat heart. FASEB J 27:3966–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  30. Medeiros C, Frederico MJ, LG d et al (2011) Exercise training reduces insulin resistance and upregulates the mTOR/p70S6k pathway in cardiac muscle of diet induced obesity rats. J Cell Physiol 226:666–674

    Article  CAS  PubMed  Google Scholar 

  31. Pieri BL, Souza DR, Luciano TF et al (2014) Effects of physical exercise on the P38MAPK/REDD1/14–3-3 pathways in the myocardium of diet-induced obesity rats. Horm Metab Res 46:621–627

    Article  CAS  PubMed  Google Scholar 

  32. Paulson DJ, Mathews R, Bowman J et al (1992) Metabolic effects of treadmill exercise training on the diabetic heart. J Appl Physiol (1985) 73:265–271

    CAS  Google Scholar 

  33. Hafstad AD, Lund J, Hadler-Olsen E et al (2013) High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes 62:2287–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burelle Y, Wambolt RB, Grist M et al (2004) Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 287:H1055–H1063

    Article  CAS  PubMed  Google Scholar 

  35. Katsumura M, Takagi S, Oya H et al (2016) Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice. Anim Sci J. doi:10.1111/asj.12734

  36. Lau DS, Connaty AD, Mahalingam S et al (2017) Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. Am J Physiol Regul Integr Comp Physiol 312:R400. doi:10.1152/ajpregu.00365.2016

    Article  PubMed  Google Scholar 

  37. Gusdon AM, Callio J, DiStefano G et al (2017) Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol 90:1. doi:10.1016/j.exger.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  38. Mansueto G, Armani A, Viscomi C et al (2017) Transcription factor EB controls metabolic flexibility during exercise. Cell Metab 25:182–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180:53–57

    Article  CAS  PubMed  Google Scholar 

  40. Shivu GN, Phan TT, Abozguia K et al (2010) Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation 121:1209–1215

    Article  PubMed  Google Scholar 

  41. Sun XD, Pan H, Tan HW et al (2012) High free fatty acids level related with cardiac dysfunction in obese rats. Diabetes Res Clin Pract 95:251–259

    Article  CAS  PubMed  Google Scholar 

  42. Strom CC, Aplin M, Ploug T et al (2005) Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J 272:2684–2695

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Ussher JR, Oka T et al (2011) Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc Res 89:148–156

    Article  CAS  PubMed  Google Scholar 

  44. Parra V, Eisner V, Chiong M et al (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77:387–397

    Article  CAS  PubMed  Google Scholar 

  45. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Shi X, Bharadwaj KG et al (2009) DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem 284:36312–36323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bilet L, van de Weijer T, Hesselink MK et al (2011) Exercise-induced modulation of cardiac lipid content in healthy lean young men. Basic Res Cardiol 106:307–315

    Article  CAS  PubMed  Google Scholar 

  48. Schrauwen-Hinderling VB, Hesselink MK, Meex R et al (2010) Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J Clin Endocrinol Metab 95:1932–1938

    Article  CAS  PubMed  Google Scholar 

  49. Schrauwen-Hinderling VB, Meex RC, Hesselink MK et al (2011) Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc Diabetol 10:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hojan K, Kwiatkowska-Borowczyk E, Leporowska E et al (2017) Inflammation, cardiometabolic markers and functional changes in a randomized controlled trial of a 12-month exercise program for prostate cancer men. Pol Arch Med Wewn. doi:10.20452/pamw.3888

  51. Mandrup CM, Egelund J, Nyberg M et al (2016) Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. Am J Obstet Gynecol 216:384.e1. doi:10.1016/j.ajog.2016.12.017

    Article  Google Scholar 

  52. Koves TR, Sparks LM, Kovalik JP et al (2013) PPARgamma coactivator-1alpha contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J Lipid Res 54:522–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuramoto K, Okamura T, Yamaguchi T et al (2012) Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 287:23852–23863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuramoto K, Sakai F, Yoshinori N et al (2014) Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 34:2721–2731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Buchanan J, Mazumder PK, Hu P et al (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    Article  CAS  PubMed  Google Scholar 

  56. Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Cardiovasc Res 88:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sung MM, Hamza SM, Dyck JR (2015) Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 22:1606–1630

    Article  CAS  PubMed  Google Scholar 

  58. Boudina S, Bugger H, Sena S et al (2009) Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119:1272–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Investig 104:447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cusi K, Maezono K, Osman A et al (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Investig 105:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Nigris V, Pujadas G, La Sala L et al (2015) Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovas Diabetol 14:114

    Article  CAS  Google Scholar 

  62. Lew JKS, Pearson JT, Schwenke DO et al (2017) Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 16:10

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

  64. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  66. Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545

    Article  CAS  PubMed  Google Scholar 

  67. Taniguchi CM, Kondo T, Sajan M et al (2006) Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab 3:343–353

    Article  CAS  PubMed  Google Scholar 

  68. Fischer Y, Thomas J, Sevilla L et al (1997) Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 272:7085–7092

    Article  CAS  PubMed  Google Scholar 

  69. XL D, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97:12222–12226

    Article  Google Scholar 

  70. Nishikawa T, Edelstein D, XL D et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  71. Inoguchi T, Battan R, Handler E et al (1992) Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 89:11059–11063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Igarashi M, Wakasaki H, Takahara N et al (1999) Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Investig 103:185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hattori Y, Hattori S, Sato N et al (2000) High-glucose-induced nuclear factor kappaB activation in vascular smooth muscle cells. Cardiovasc Res 46:188–197

    Article  CAS  PubMed  Google Scholar 

  74. Way KJ, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 51:2709–2718

    Article  CAS  PubMed  Google Scholar 

  75. Yamaguchi H, Igarashi M, Hirata A et al (2004) Altered PDGF-BB-induced p38 MAP kinase activation in diabetic vascular smooth muscle cells: roles of protein kinase C-delta. Arterioscler Thromb Vasc Biol 24:2095–2101

    Article  CAS  PubMed  Google Scholar 

  76. Tabit CE, Shenouda SM, Holbrook M et al (2013) Protein kinase C-beta contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 127:86–95

    Article  CAS  PubMed  Google Scholar 

  77. Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A 94:9320–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Inoguchi T, Li P, Umeda F et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  79. Chen F, Yu Y, Haigh S et al (2014) Regulation of NADPH oxidase 5 by protein kinase C isoforms. PLoS One 9:e88405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137

    Article  CAS  PubMed  Google Scholar 

  81. Loganathan R, Novikova L, Boulatnikov IG et al (2012) Exercise-induced cardiac performance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylglycerol. J Appl Physiol (1985) 113:817–826

    Article  CAS  Google Scholar 

  82. Gonzalez RG, Barnett P, Aguayo J et al (1984) Direct measurement of polyol pathway activity in the ocular lens. Diabetes 33:196–199

    Article  CAS  PubMed  Google Scholar 

  83. Iwata K, Nishinaka T, Matsuno K et al (2007) The activity of aldose reductase is elevated in diabetic mouse heart. J Pharmacol Sci 103:408–416

    Article  CAS  PubMed  Google Scholar 

  84. Tang WH, Cheng WT, Kravtsov GM et al (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol Cell Physiol 299:C643–C653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramasamy R, Oates PJ, Schaefer S (1997) Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 46:292–300

    Article  CAS  PubMed  Google Scholar 

  86. Candido R, Forbes JM, Thomas MC et al (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    Article  CAS  PubMed  Google Scholar 

  87. Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506

    Article  CAS  PubMed  Google Scholar 

  88. Kislinger T, Tanji N, Wendt T et al (2001) Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 21:905–910

    Article  CAS  PubMed  Google Scholar 

  89. Basta G, Lazzerini G, Massaro M et al (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105:816–822

    Article  CAS  PubMed  Google Scholar 

  90. Bucciarelli LG, Wendt T, Qu W et al (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835

    Article  CAS  PubMed  Google Scholar 

  91. Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  92. Koves TR, Ussher JR, Noland RC et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  93. Sarkar P, Kar K, Mondal MC et al (2010) Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. Ann Acad Med Singap 39:904–909

    Google Scholar 

  94. Raposeiras-Roubin S, Rodino-Janeiro BK, Grigorian-Shamagian L et al (2011) Relation of soluble receptor for advanced glycation end products to predict mortality in patients with chronic heart failure independently of Seattle heart failure score. Am J Cardiol 107:938–944

    Article  CAS  PubMed  Google Scholar 

  95. Basta G, Sironi AM, Lazzerini G et al (2006) Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein. J Clin Endocrinol Metab 91:4628–4634

    Article  CAS  PubMed  Google Scholar 

  96. Yonekura H, Yamamoto Y, Sakurai S et al (2003) Novel splice variants of the receptor for advanced glycation endproducts expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370:1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Choi KM, Han KA, Ahn HJ et al (2012) Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial. J Clin Endocrinol Metab 97:3751–3758

    Article  CAS  PubMed  Google Scholar 

  98. Wright KJ, Thomas MM, Betik AC et al (2014) Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol 50:9–18

    Article  CAS  PubMed  Google Scholar 

  99. Botta A, Laher I, Beam J et al (2013) Short term exercise induces PGC-1alpha, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS One 8:e70248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boor P, Celec P, Behuliak M et al (2009) Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats. Metabolism 58:1669–1677

    Article  CAS  PubMed  Google Scholar 

  101. Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290:E1–E8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Housley MP, Rodgers JT, Udeshi ND et al (2008) O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283:16283–16292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lunde IG, Aronsen JM, Kvaloy H et al (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172

    Article  CAS  PubMed  Google Scholar 

  104. Erickson JR, Pereira L, Wang L et al (2013) Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Belke DD (2011) Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart. J Appl Physiol (1985) 111:157–162

    Article  CAS  Google Scholar 

  106. Bennett CE, Johnsen VL, Shearer J et al (2013) Exercise training mitigates aberrant cardiac protein OGlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 92:657–663

    Article  CAS  PubMed  Google Scholar 

  107. Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 12:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Medford HM, Porter K, Marsh SA (2013) Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart Circ Physiol 305:H114–H123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  110. Kayama Y, Raaz U, Jagger A et al (2015) Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16:25234–25263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesityrelated diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466

    Article  CAS  PubMed  Google Scholar 

  112. Anderson EJ, Kypson AP, Rodriguez E et al (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54:1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mahmoud AM, Ashour MB, Abdel-Moneim A et al (2012) Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complicat 26:483–490

    Article  PubMed  Google Scholar 

  114. Vazquez-Medina JP, Popovich I, Thorwald MA et al (2013) Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats. Am J Physiol Heart Circ Physiol 305:H599–H607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai L, Kang YJ (2003) Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol 3:219–228

    Article  CAS  PubMed  Google Scholar 

  116. Di FC, Cuzzocrea S, Rossi F et al (2006) Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovasc Drug Rev 24:77–87

    Article  Google Scholar 

  117. Tocchetti CG, Stanley BA, Sivakumaran V et al (2015) Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during type I diabetes. Clin Sci (Lond) 129:561–574

    Article  CAS  Google Scholar 

  118. Koncsos G, Varga ZV, Baranyai T et al (2016) Diastolic dysfunction in prediabetic male rats: role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 311:H927–H943

    Article  PubMed  PubMed Central  Google Scholar 

  119. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  120. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    Article  CAS  PubMed  Google Scholar 

  121. Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  CAS  PubMed  Google Scholar 

  122. Shen X, Zheng S, Metreveli NS et al (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    Article  CAS  PubMed  Google Scholar 

  123. Radak Z, Taylor AW, Ohno H et al (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    CAS  PubMed  Google Scholar 

  124. Bo H, Jiang N, Ma G et al (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med 44:1373–1381

    Article  CAS  PubMed  Google Scholar 

  125. Muthusamy VR, Kannan S, Sadhaasivam K et al (2012) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52:366–376

    Article  CAS  PubMed  Google Scholar 

  126. Sanchez G, Escobar M, Pedrozo Z et al (2008) Exercise and tachycardia increase NADPH oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovasc Res 77:380–386

    Article  CAS  PubMed  Google Scholar 

  127. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Selemidis S, Sobey CG, Wingler K et al (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254–291

    Article  CAS  PubMed  Google Scholar 

  129. Segal BH, Grimm MJ, Khan AN et al (2012) Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53:72–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu Q, Dalic A, Fang L et al (2011) Myocardial oxidative stress contributes to transgenic beta(2)-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol 162:1012–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Anilkumar N, Weber R, Zhang M et al (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28:1347–1354

    Article  CAS  PubMed  Google Scholar 

  132. Fukuda M, Nakamura T, Kataoka K et al (2010) Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J Hypertens 28:340–352

    Article  CAS  PubMed  Google Scholar 

  133. Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 82:9–20

    Article  CAS  PubMed  Google Scholar 

  134. Liu J, Zhou J, An W et al (2010) Apocynin attenuates pressure overloadinduced cardiac hypertrophy in rats by reducing levels of reactive oxygen species. Can J Physiol Pharmacol 88:745–752

    Article  CAS  PubMed  Google Scholar 

  135. Zhao P, Zhang J, Yin XG et al (2013) The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sci 92:633–638

    Article  CAS  PubMed  Google Scholar 

  136. Li JM, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    Article  CAS  PubMed  Google Scholar 

  137. Kuroda J, Ago T, Matsushima S et al (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sharma NM, Rabeler B, Zheng H et al (2016) Exercise training attenuates upregulation of p47phox and p67phox in hearts of diabetic rats. Oxidative Med Cell Longev 2016:5868913, 1

    Google Scholar 

  139. Li J, Zhu H, Shen E et al (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59:2033–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shen E, Li Y, Li Y et al (2009) Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58:2386–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grijalva J, Hicks S, Zhao X et al (2008) Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovasc Diabetol 7:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bidasee KR, Zheng H, Shao CH et al (2008) Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β adrenoceptors. J Appl Physiol (1985) 105:907–914

    Article  CAS  Google Scholar 

  143. Veeranki S, Givvimani S, Kundu S et al (2016) Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. J Mol Cell Cardiol 92:163–173

    Article  CAS  PubMed  Google Scholar 

  144. Crabtree MJ, Hale AB, Channon KM (2011) Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radic Biol Med 50:1639–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Carnicer R, Crabtree MJ, Sivakumaran V et al (2013) Nitric oxide synthases in heart failure. Antioxid Redox Signal 18:1078–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zou MH, Shi C, Cohen RA (2002) Oxidation of the zincthiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kajstura J, Fiordaliso F, Andreoli AM et al (2001) IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50:1414–1424

    Article  CAS  PubMed  Google Scholar 

  148. Frustaci A, Kajstura J, Chimenti C et al (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132

    Article  CAS  PubMed  Google Scholar 

  149. Jo H, Otani H, Jo F et al (2011) Inhibition of nitric oxide synthase uncoupling by sepiapterin improves left ventricular function in streptozotocin-induced diabetic mice. Clin Exp Pharmacol Physiol 38:485–493

    Article  CAS  PubMed  Google Scholar 

  150. Husain K, Hazelrigg SR (2002) Oxidative injury due to chronic nitric oxide synthase inhibition in rat: effect of regular exercise on the heart. Biochim Biophys Acta 1587:75–82

    Article  CAS  PubMed  Google Scholar 

  151. Kleindienst A, Battault S, Belaidi E et al (2016) Exercise does not activate the β3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol 111:40

    Article  PubMed  CAS  Google Scholar 

  152. Harzand A, Tamariz L, Hare JM (2012) Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition. Congest Heart Fail 18:179–182

    Article  CAS  PubMed  Google Scholar 

  153. Amado LC, Saliaris AP, Raju SV et al (2005) Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. J Mol Cell Cardiol 39:531–536

    Article  CAS  PubMed  Google Scholar 

  154. Rajesh M, Mukhopadhyay P, Batkai S et al (2009) Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med 13:2330–2341

    Article  PubMed  Google Scholar 

  155. Gao X, Xu Y, Xu B et al (2012) Allopurinol attenuates left ventricular dysfunction in rats with early stages of streptozotocin-induced diabetes. Diabetes Metab Res Rev 28:409–417

    Article  CAS  PubMed  Google Scholar 

  156. Suzuki H, Kayama Y, Sakamoto M et al (2015) Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 64:618–630

    Article  CAS  PubMed  Google Scholar 

  157. Faria A, Persaud SJ (2016) Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther 172:50. doi:10.1016/j.pharmthera.2016.11.013

    Article  PubMed  CAS  Google Scholar 

  158. Wautier MP, Chappey O, Corda S et al (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694

    CAS  PubMed  Google Scholar 

  159. Christ SE, Moffitt AJ, Peck D et al (2013) The effects of tetrahydrobiopterin (BH4) treatment on brain function in individuals with phenylketonuria. Neuroimage Clin 3:539–547

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hou J, Zheng D, Fung G et al (2016) Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Can J Physiol Pharmacol 94:332–340

    Article  CAS  PubMed  Google Scholar 

  161. Gu Q, Wang B, Zhang XF et al (2014) Contribution of receptor for advanced glycation end products to vasculature-protecting effects of exercise training in aged rats. Eur J Pharmacol 741:186–194

    Article  CAS  PubMed  Google Scholar 

  162. Santilli F, Vazzana N, Iodice P et al (2013) Effects of high-amount-high-intensity exercise on in vivo platelet activation: modulation by lipid peroxidation and AGE/RAGE axis. Thromb Haemost 110:1232–1240

    Article  CAS  PubMed  Google Scholar 

  163. Fisher-Wellman KH, Mattox TA, Thayne K et al (2013) Novel role for thioredoxin reductase-2 in mitochondrial redox adaptations to obesogenic diet and exercise in heart and skeletal muscle. J Physiol 591:3471–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Claudio ER, Almeida SA, Mengal V et al (2017) Swimming training prevents coronary endothelial dysfunction in ovariectomized spontaneously hypertensive rats. Braz J Med Biol Res 50:e5495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hyatt HW, Smuder AJ, Sollanek KJ et al (2016) Comparative changes in antioxidant enzymes and oxidative stress in cardiac, fast twitch and slow twitch skeletal muscles following endurance exercise training. Int J Physiol Pathophysiol Pharmacol 8:160–168

    PubMed  PubMed Central  Google Scholar 

  166. Conti FF, Brito Jde O et al (2015) Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am J Physiol Regul Integr Comp Physiol 309:R1532–R1539

    Article  CAS  PubMed  Google Scholar 

  167. Tan Y, Ichikawa T, Li J et al (2011) Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Horie M, Warabi E, Komine S et al (2015) Cytoprotective role of Nrf2 in electrical pulse stimulated C2C12 myotube. PLoS One 10:e0144835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and antioxidant response in mice. J Physiol 594:5195–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang P, Li CG, Qi Z et al (2016) Acute exercise stress promotes ref/Nrf signaling and increases mitochondrial antioxidant activity in skeletal muscle. Exp Physiol 101:410–420

    Article  CAS  PubMed  Google Scholar 

  171. Narasimhan M, Hong J, Atieno N et al (2014) Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radic Biol Med 71:402–414

    Article  CAS  PubMed  Google Scholar 

  172. Gounder SS, Kannan S, Devadoss D et al (2012) Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7:e45697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mahmoud, A.M. (2017). Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_12

Download citation

Publish with us

Policies and ethics