Skip to main content

Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 999))

Abstract

Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients’ morbimortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References 

  1. Acharyya S, Ladner KJ, Nelsen LL et al (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114(3):370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamapoulos S, Parissis J, Kroupis M et al (2001) Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 22(9):791–797

    Article  Google Scholar 

  3. Adamapoulos S, Parissis J, Karatzas D et al (2002) Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 39(4):653–663

    Article  Google Scholar 

  4. Agnoletti L, Curello S, Bachetti T et al (1999) Serum from patients with severe heart failure downregulates eNOS and is proapoptotic. Circulation 100(19):1983–1991

    Article  CAS  PubMed  Google Scholar 

  5. Anker SD, Negassa A, Coats AJS et al (2003) Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361(9363):1077–1083

    Article  CAS  PubMed  Google Scholar 

  6. Antunes-Correa LM, Nobre TS, Groehs RV et al (2014) Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 307(11):1655–1666

    Article  CAS  Google Scholar 

  7. Arthur ST, Noone JM, Van Doren BA et al (2014) One-year prevalence, comorbidities and cost of cachexia-related inpatient admissions in the USA. Drugs Context 3:212265

    Article  PubMed  PubMed Central  Google Scholar 

  8. Attaix D, Combaret L, Béchet D et al (2008) Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr Opin Support Palliat Care 2(4):262–266

    Article  PubMed  Google Scholar 

  9. Bacurau AV, Jannig PR, de Moraes WM et al (2016) Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol 214:137–147

    Article  PubMed  Google Scholar 

  10. Bacurau AV, Jardim MA, Ferreira JC et al (2009) Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106(5):1631–1640

    Article  PubMed  Google Scholar 

  11. Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovas Res 37(2):290–299

    Article  CAS  Google Scholar 

  12. Barbosa VA, Luciano TF, Vitto MF et al (2012) Exercise training plays cardioprotection through the oxidative stress reduction in obese rats submitted to myocardial infarction. Int J Cardiol 157(3):422–424

    Article  PubMed  Google Scholar 

  13. Barlucchi L, Leri A, Dostal DE et al (2001) Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 88(3):298–304

    Article  CAS  PubMed  Google Scholar 

  14. Barton ER, Morris L, Musaro A et al (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157(1):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Batista ML Jr, Santos RV, Oliveira EM, et al (2007) Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. J Appl Physiol 102 (5):2033–2039

    Google Scholar 

  16. Bauersachs J, Bouloumié A, Fraccarollo D et al (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression. Circulation 100(3):292–298

    Article  CAS  PubMed  Google Scholar 

  17. Bibevski S, Dunlap ME (1999) Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation 99(22):2958–2963

    Article  CAS  PubMed  Google Scholar 

  18. Bibevski S, Dunlap ME (2011) Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 16(2):129–135

    Article  PubMed  Google Scholar 

  19. Blaauw B, Canato M, Agatea L et al (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23(11):3896–3905

    Article  CAS  PubMed  Google Scholar 

  20. Bozkurt B, Kribbs SB, Clubb FJ Jr, et al (1998) Pathophysiologically relevant concentration of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97 (14):1382–1391

    Google Scholar 

  21. Braith RW, Welsch MA, Feigenbaum MS et al (1999) Neuroendocrine activation in heart failure is modified by endurance exercise training. J Am Coll Cardiol 34(4):1170–1175

    Article  CAS  PubMed  Google Scholar 

  22. Braunwald E (2008) The management of heart failure. Circ Heart Fail 1(1):58–62

    Article  PubMed  Google Scholar 

  23. Braunwald E (2013) Heart failure. JACC Heart Fail 1(1):1–20

    Article  PubMed  Google Scholar 

  24. Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention o myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 25(5):563–575

    Article  CAS  PubMed  Google Scholar 

  25. Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97(11):2509–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bristow MR, Ginsburg R, Umans V et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptordown-regulation in heart failure. Circ Res 59(3):297–309

    Article  CAS  PubMed  Google Scholar 

  27. Brum PC, Da Silva GJ, Moreira ED et al (2000) Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertension 36(6):1018–1022

    Article  CAS  PubMed  Google Scholar 

  28. Bueno CR Jr, Ferreira JC, Pereira MG, et al (2010) Aerobic exercise training improves skeletal muscle function and Ca2+ handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109 (3):702–709

    Google Scholar 

  29. Campos JC, Queliconi BB, Dourado PM et al (2012) Exercise training restores cardiac protein quality control in heart failure. PLoS One 7(12):5806–5819

    Article  CAS  Google Scholar 

  30. Carillo BA, Oliveira-Sales EB, Andersen M et al (2012) Changes in GABAergic inputs in the paraventricular nucleus maintain sympathetic vasomotor tone in chronic heart failure. Auton Neurosci 171(1-2):41–48

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Hou M, Li Y et al (2005) Increased superoxide production causes coronary endothelial dysfunction and depressed oxygen consumption in the failing heart. Am J Physiol Heart Circ Physiol 288(1):133–141

    Article  CAS  Google Scholar 

  32. Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107(25):3133–3140

    Article  CAS  PubMed  Google Scholar 

  33. Coirault C, Hagege A, Chemla D et al (2001) Angiotensin-converting enzyme inhibitor therapy improves respiratory muscle strength in patients with heart failure. Chest 119(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  34. Cole CR, Blackstone EH, Pashkow FJ et al (1999) Heart rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341(18):1351–1357

    Article  CAS  PubMed  Google Scholar 

  35. Dalla Libera L, Sabbadini R, Renken C et al (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33(10):1871–1878

    Article  CAS  PubMed  Google Scholar 

  36. Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74(2):323–364

    CAS  PubMed  Google Scholar 

  37. De Ferrari GM, Crijns HJ, Borggrefe M et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855

    Article  PubMed  CAS  Google Scholar 

  38. De Waard MC, Van Der Velden J, Bito V et al (2007) Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction. Circ Res 100(7):1079–1088

    Article  PubMed  CAS  Google Scholar 

  39. Dibona GF, Jones SY, Brooks VL (1995) ANG II receptor blockade and arterial baroreflex regulation of renal nerve activity in cardiac failure. Am J Physiol 269(5):1189–1196

    Google Scholar 

  40. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 10(10):933–989

    Article  PubMed  Google Scholar 

  41. Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure. Circ Res 113(6):709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erbs S, Höllriegel R, Linke A et al (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail 3(4):486–494

    Article  PubMed  Google Scholar 

  43. Fang J, Wylie-Rosett J, Cohen HW et al (2003) Exercise, body mass index, caloric intake, and cardiovascular mortality. Am J Prev Med 25(4):283–289

    Article  PubMed  Google Scholar 

  44. Feng X, Luo Z, Ma L et al (2011) Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-delta/AMPK pathway. J Cell Mol Med 15(7):1572–1581

    Article  CAS  PubMed  Google Scholar 

  45. Ferrario CM, Strawn WB (2006) Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 98(1):121–128

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira JC, Boer BN, Grinberg M et al (2012) Protein quality control disruption by PKCβII in heart failure; rescue by the selective PKCβII inhibitor, βIIV5-3. PLoS One 7(3.) e33175

    Google Scholar 

  47. Folli F, Kahn CR, Hansen H et al (1997) Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 100(9):2158–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fraga R, Franco FG, Roveda F et al (2007) Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail 9(6-7):630–636

    Article  CAS  PubMed  Google Scholar 

  49. Gao L, Wang W, Li YL et al (2004) Superoxide mediates sympathoexcitation in heart failure. Circ Res 95(9):937–944

    Article  CAS  PubMed  Google Scholar 

  50. Gao L, Wang W, Liu D et al (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115(24):3095–3102

    Article  PubMed  Google Scholar 

  51. Gao L, Wang WZ, Wang W et al (2008) Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure. Hypertension 52(4):708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. George I, Xydas S, Mancini DM et al (2006) Effect of clenbuterol on cardiac and skeletal muscle function during left ventricular assist device support. J Heart Lung Transplant 25(9):1084–1090

    Article  PubMed  Google Scholar 

  53. Gheorghiade M, Colucci WS, Swedberg K (2003) Β-blockers in chronic heart failure. Circulation 107(12):1570–1575

    Article  PubMed  Google Scholar 

  54. Gielen S, Adams V, Mobius-Winkler S et al (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42(5):861–868

    Article  CAS  PubMed  Google Scholar 

  55. Gielen S, Sandri M, Kozarez I et al (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig exercise intervention in chronic heart failure and aging catabolism study. Circulation 125(22):2716–2727

    Article  CAS  PubMed  Google Scholar 

  56. Ginsburg R, Bristow MR, Billingham ME et al (1983) Study of the normal and failing isolated human heart: decreased response of failing heart to isoproterenol. Am Heart J 106(3):535–540

    Article  CAS  PubMed  Google Scholar 

  57. Gold MR, Van Veldhuisen DJ, Hauptman PJ et al (2016) Vagus nerve stimulation for the treatment of heart failure. INOVATE-HF Trial J Am Coll Cardiol 68(2):149–158

    Article  PubMed  Google Scholar 

  58. Gomes-Santos IL, Fernandes T, Couto GK et al (2014) Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PLoS One 9(5.) e98012

    Google Scholar 

  59. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gullestad L, Ueland T, Vinge LE et al (2012) Inflammatory cytokines in heart failure: mediators and markers. Cardiology 122(1):23–35

    Article  CAS  PubMed  Google Scholar 

  61. Haack KKV, Engler CW, Papoutsi E et al (2012) Parallel changes in neuronal AT1R and GRK5 expression following exercise training in heart failure. Hypertension 60(2):354–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hambrecht R, Niebauer J, Fiehn E et al (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25(6):1239–1249

    Article  CAS  PubMed  Google Scholar 

  63. Hambrecht R, Schulze PC, Gielen S et al (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12(4):401–406

    Article  PubMed  Google Scholar 

  64. Haykowsky MJ, Liang Y, Pechter D et al (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49(24):2329–2336

    Article  PubMed  Google Scholar 

  65. Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148(1):291–300

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hill MF, Singal PK (1997) Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 96(7):2414–2420

    Article  CAS  PubMed  Google Scholar 

  67. Hirooka Y, Shigematsu H, Kishi T et al (2003) Reduced nitric oxide synthase in the brainstem contributes to enhanced sympathetic drive in rats with heart failure. J Cardiovasc Pharmacol 42(Suppl 1):S111–S115

    Article  CAS  PubMed  Google Scholar 

  68. Hunt SA, Abraham WT, Chin MH et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and Management of Heart Failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119(14):391–479

    Article  Google Scholar 

  69. Ichige MH, Santos CR, Jordão CP et al (2016) Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure. J Physiol 594(21):6241–6254

    Article  CAS  PubMed  Google Scholar 

  70. Ide T, Tsutsui H, Kinugawa S et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86(2):152–157

    Article  CAS  PubMed  Google Scholar 

  71. Joassard OR, Amirouche A, Gallot YS et al (2013) Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. Int J Biochem Cell Biol 45(11):2444–2455

    Article  CAS  PubMed  Google Scholar 

  72. Josephson RA, Silverman HS, Lakatta EG et al (1991) Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266(4):2354–2361

    CAS  PubMed  Google Scholar 

  73. Kar S, Gao L, Zucker IH (2010) Exercise training normalizes ACE and ACE2 in the brains of rabbits with pacing-induced heart failure. J Appl Physiol 108(4):923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Katz SD, Khan T, Zeballos GA et al (1999) Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation 99(16):2113–2117

    Article  CAS  PubMed  Google Scholar 

  75. Kemi OJ, Haram PM, Høydal MA et al (2013) Exercise training and losartan improve endothelial function in heart failure rats by different mechanisms. Scand Cardiovasc J 47(3):160–167

    Article  CAS  PubMed  Google Scholar 

  76. Kemi OJ, MacQuaide N, Hoydal MA et al (2012) Exercise training corrects control of spontaneous calcium waves in heart from myocardial infarction heart failure rats. J Cell Physiol 227(1):20–26

    Article  CAS  PubMed  Google Scholar 

  77. Kleiber AC, Zheng H, Schultz HD et al (2008) Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. Am J Physiol Regul Integr Comp Physiol 294(6):1863–1872

    Article  CAS  Google Scholar 

  78. Konstam MA, Kramer DG, Patel AR et al (2011) Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4(1):98–108

    Article  PubMed  Google Scholar 

  79. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32(7):1552–1562

    Article  CAS  PubMed  Google Scholar 

  80. Kubo SH, Rector TS, Bank AJ et al (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84(4):1589–1596

    Article  CAS  PubMed  Google Scholar 

  81. Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    Article  CAS  PubMed  Google Scholar 

  82. La Rovere MT, Bigger JT, Marcus FI et al (1998) Baroreflex sensistivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351(9101):478–484

    Article  PubMed  Google Scholar 

  83. Lang CC, Struthers AD (2013) Targeting the renin-angiotensin-aldosterone system in heart failure. Nat Rev Cardiol 10(3):125–134

    Article  CAS  PubMed  Google Scholar 

  84. Lataro RM, Silva CA, Fazan R Jr, et al (2013) Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during onset of heart failure. Am J Physiol Regul Integr Comp Physiol 304 (8):908–916

    Google Scholar 

  85. Lawler JM, Kwak HB, Kim JH et al (2009) Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol Regul Integr Comp Physiol 296(5):1496–1502

    Article  CAS  Google Scholar 

  86. Lecker SH, Jagoe RT, Gilbert A et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51

    Article  CAS  PubMed  Google Scholar 

  87. Leosco D, Rengo G, Iaccarino G et al (2008) Exercise promotes angiogenesis and improves β-adrenergic receptor signaling in the post-ischaemic failing rat heart. Cardiovas Res 78(2):385–394

    Article  CAS  Google Scholar 

  88. Lerman A, Kubo SH, Tschumperlin LK et al (1992) Plasma endothelin concentrations in humans with end-stage heart failure and after heart transplantation. J Am Coll Cardiol 20(4):849–853

    Article  CAS  PubMed  Google Scholar 

  89. Li M, Zheng C, Sato T et al (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109(1):120–124

    Article  PubMed  Google Scholar 

  90. Li YF, Cornish KG, Patel KP (2003) Alteration of NMDA NR1 receptors within the paraventricular nucleus of hypothalamus in rats with heart failure. Circ Res 93(10):990–997

    Article  CAS  PubMed  Google Scholar 

  91. Li YL, Ding Y, Agnew C et al (2008) Exercise training improves peripheral chemoreflex function in heart failure rabbits. J Appl Physiol 105(3):782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li YP, Chen Y, Li AS et al (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285(4):806–812

    Article  Google Scholar 

  93. Linke A, Adams V, Schulze PC et al (2005) Antioxidative effects of exercise training in patients with chronic heart failure. Circulation 111(14):1763–1770

    Article  CAS  PubMed  Google Scholar 

  94. Liu JL, Irvine S, Reid IA et al (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing induced heart failure: a role for angiotensin II. Circulation 102(15):1854–1862

    Article  CAS  PubMed  Google Scholar 

  95. Liu JL, Kulakofsky J, Zucker IH (2002) Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. J Appl Physiol 92(6):2403–2408

    Article  PubMed  Google Scholar 

  96. Lombès M, Oblin ME, Gasc JM et al (1992) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71(3):503–510

    Article  PubMed  Google Scholar 

  97. Lunde PK, Sjaastad I, Schiøtz Thorud HM et al (2001) Skeletal muscle disorders in heart failure. Acta Physiol Scand 171(3):277–294

    Article  CAS  PubMed  Google Scholar 

  98. Luo M, Anderson ME (2013) Mechanisms of altered Ca2+ handling in heart failure. Circ Res 113(6):690–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lynch GS, Ryall JG (2008) Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88(2):729–767

    Article  CAS  PubMed  Google Scholar 

  100. Massie B, Conway M, Yonge R et al (1987) Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation 76(5):1009–1019

    Article  CAS  PubMed  Google Scholar 

  101. Medeiros A, Rolim NP, Oliveira RS et al (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–109

    Article  CAS  PubMed  Google Scholar 

  102. Meléndez GC, McLarty JL, Levick SP et al (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56(2):225–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Messaoudi S, Azibani F, Delcayre C et al (2012) Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol 350(2):266–272

    Article  CAS  PubMed  Google Scholar 

  104. Meyer WJ, Nichols NR (1981) Mineralocorticoid binding in cultured smooth muscle cells and fibroblasts from rat aorta. J Steroid Biochem 14(11):1157–1168

    Article  CAS  PubMed  Google Scholar 

  105. Meyer B, Mörtl D, Streckter K et al (2005) Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol 46(6):1011–1018

    Article  PubMed  Google Scholar 

  106. Michelini LC (2007) The NTS and integration of cardiovascular control during exercise in normotensive and hypertensive individuals. Curr Hypertens Rep 9(3):214–221

    Article  PubMed  Google Scholar 

  107. Michelini LC (2007) Differential effects of vasopressinergic and oxytocinergic pre-autonomic neurons on circulatory control: reflex mechanisms and changes during exercise. Clin Exp Pharmacol Physiol 34(4):369–376

    Article  CAS  PubMed  Google Scholar 

  108. Michelini LC, O’Leary DS, Raven PB et al (2015) Neural control of circulation and exercise: a translational approach disclosing interactiong between central command, arterial baroreflex, and muscle metaboreflex. Am J Physiol Heart Circ Physiol 309(3):381–392

    Article  CAS  Google Scholar 

  109. Middlekauff HR, Vigna C, Verity MA et al (2012) Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism? J Card Fail 18(9):724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Molenaar P, Chen L, Parsonage WA (2006) Cardiac implications for the use of beta2-adrenoceptor agonists for the management of muscle wasting. Br J Pharmacol 147(6):583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mousa TM, Liu D, Cornish KG et al (2008) Exercise training enhances baroreflex sensitivity by an angiotensin II-dependent mechanism in chronic heart failure. J Appl Physiol 104(3):616–624

    Article  CAS  PubMed  Google Scholar 

  112. Munkvik M, Rehn TA, Slettaløkken G et al (2010) Training effects on skeletal muscle calcium handling in human chronic heart failure. Med Sci Sports Exerc 42(5):847–855

    Article  CAS  PubMed  Google Scholar 

  113. Musaro A, McCullagh K, Paul A et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27(2):195–200

    Article  CAS  PubMed  Google Scholar 

  114. Navegantes LC, Migliorini RH, Kettelhut IC (2002) Adrenergic control of protein metabolism in skeletal muscle. Curr Opin Clin Nutr Metab Care 5(3):281–286

    Article  CAS  PubMed  Google Scholar 

  115. Navegantes LC, Resano NM, Migliorini RH et al (1999) Effect of guanethidine-induced adrenergic blockade on the different proteolytic systems in rat skeletal muscle. Am J Physiol 277(5):883–889

    Google Scholar 

  116. Navegantes LC, Resano NM, Migliorini RH et al (2000) Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. Am J Physiol Endocrinol Metab 279(3):663–668

    Google Scholar 

  117. Negrao CE, Middlekauff HR (2008) Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 13(1):51–60

    Article  PubMed  Google Scholar 

  118. Niebauer J (2000) Inflammatory mediators in heart failure. Int J Cardiol 72(3):209–213

    Article  CAS  PubMed  Google Scholar 

  119. Nunes RB, Tonetto M, Machado N et al (2008) Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. J Appl Physiol 104(6):1641–1647

    Article  CAS  PubMed  Google Scholar 

  120. Pallafacchina G, Calabria E, Serrano AL et al (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99(14):9213–9218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patel KP, Salgado HC, Liu X et al (2013) Exercise training normalizes the blunted central componente of the baroreflex in rats with heart failure: role of the PVN. Am J Physiol Heart Circ Physiol 305(2):173–181

    Article  CAS  Google Scholar 

  122. Patel KP, Zhang K, Carmines PK (2000) Norepinephrine turnover in peripheral tissues of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 278(3):556–562

    Google Scholar 

  123. Patel KP, Zhang K, Zucker IH et al (1996) Decreased gene expression of neuronal nitric oxide synthase in hypothalamus and brainstem of rats in heart failure. Brain Res 734(1-2):109–115

    Article  CAS  PubMed  Google Scholar 

  124. Pearce P, Funder JW (1987) High affinity aldosterone binding sites (type I receptors) in rat heart. Clin Exp Pharmacol Physiol 14(11–12):859–866

    Article  CAS  PubMed  Google Scholar 

  125. Pereira MG, Ferreira JC, Bueno CR Jr, et al (2009) Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Eur J Appl Physiol 105 (6):843

    Google Scholar 

  126. Perreault CL, Gonzalez-Serratos H, Litwin SE et al (1993) Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ Res 73(2):405–412

    Article  CAS  PubMed  Google Scholar 

  127. Piepoli MF (2013) Exercise training in chronic heart failure: mechanisms and therapies. Neth Heart J 21(2):85–90

    Article  CAS  PubMed  Google Scholar 

  128. Pliquett RU, Cornish KG, Patel KP et al (2003) Amelioration of depressed cardiopulmonary reflex control of sympathetic nerve activity by short—term exercise training in male rabbits with heart failure. J Appl Physiol 95(5):1883–1888

    Article  CAS  PubMed  Google Scholar 

  129. Pomerantz BJ, Reznikov LL, Harken AH et al (2001) Inhibition of caspase-1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci U S A 98(5):2871–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Prabhakar NR, Dick TE, Nanduri J et al (2007) Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol 92(1):39–44

    Article  CAS  PubMed  Google Scholar 

  131. Ramsey MW, Goodfellow J, Jones CJ et al (1995) Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92(11):3212–3219

    Article  CAS  PubMed  Google Scholar 

  132. Rigo F, Gherardi S, Galderisi M et al (2007) The independente prognostic value of contractile and coronary flow reserve determined by dipiridamole stress echocardiography in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 99(8):1154–1158

    Article  PubMed  Google Scholar 

  133. Robert V, Van Thiem N, Cheav SL et al (1994) Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension. Hypertension 24(1):30–36

    Article  CAS  PubMed  Google Scholar 

  134. Rolim NP, Medeiros A, Rosa KT et al (2007) Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure. Physiol Genomics 29(3):246–252

    Article  CAS  PubMed  Google Scholar 

  135. Rondon E, Brasileiro-Santos MS, Moreira ED et al (2006) Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 291(6):2801–2806

    Article  CAS  Google Scholar 

  136. Roveda F, Middlekauff HR, Rondon MU et al (2003) The effets of exercise training on sympathetic neural activation in advanced heart failure: A randomized controlled trials. J Am Coll Cardiol 42(5):854–860

    Article  PubMed  Google Scholar 

  137. Sabino JP, da Silva CA, de Melo RF et al (2013) The treatment with pyridostigmine improves the cardiocirculatory function in rats with chronic heart failure. Auton Neurosci 173(1-2):58–64

    Article  CAS  PubMed  Google Scholar 

  138. Schakman O, Gilson H, de Coninck V et al (2005) Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology 146(4):1789–1797

    Article  CAS  PubMed  Google Scholar 

  139. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II—induced hypertrophy of cardiac myocaytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73(3):413–423

    Article  CAS  PubMed  Google Scholar 

  140. Sakai K, Hirooka Y, Shigematsu H et al (2005) Overexpression of eNOS in brain stem reduces enhanced sympathetic drive in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 289(5):2159–2166

    Article  CAS  Google Scholar 

  141. Sanders P, Kistler PM, Morton JB et al (2004) Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation 110(8):897–903

    Article  PubMed  Google Scholar 

  142. Sandri M, Viehmann M, Adams V et al (2016) Chronic heart failure and anging – effects of exercise training on endothelial function and mechanisms of endothelial regeneration: results from the Leipzig exercise intervention in chronic heart failure and aging (LEICA) study. Eur J Prev Cardiol 23(4):349–358

    Article  PubMed  Google Scholar 

  143. Santos JM, Kowatsch I, Tsutsui JM et al (2010) Effects of exercise training on myocardial blood flow reserve in patients with heart failure and left ventricular systolic dysfunction. Am J Cardiol 105(2):243–248

    Article  PubMed  Google Scholar 

  144. Sarto P, Balducci E, Balconi G et al (2007) Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail 13(9):701–708

    Article  CAS  PubMed  Google Scholar 

  145. Schultz HD, Marcus NJ, Del Rio R (2015) Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol 100(2):124–129

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schwartz PJ, De Ferrari GM, Sanzo A et al (2008) Long term vagal stimulation in patients with advanced heart failure. First experience in man. Eur J Heart Fail 10(9):884–891

    Article  PubMed  Google Scholar 

  147. Schwinger RH, Böhm M, Koch A et al (1994) The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 74(5):959–969

    Article  CAS  PubMed  Google Scholar 

  148. Schulze PC, Fang J, Kassik KA et al (2005) Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res 97(5):418–426

    Article  CAS  PubMed  Google Scholar 

  149. Sladek CD, Michelini LC, Stachenfeld NS et al (2015) Endocrine-autonomic linkages. Compr Physiol 5(3):1281–1323

    Article  PubMed  Google Scholar 

  150. Silva GJ, Brum PC, Negrao CE et al (1997) Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertension 30(3):714–719

    Article  CAS  PubMed  Google Scholar 

  151. Silva MT, Wensing LA, Brum PC et al (2014) Impaired structural and functional regeneration of skeletal muscles from beta2-adrenoceptor knockout mice. Acta Physiol 211(4):617–633

    Article  CAS  Google Scholar 

  152. Song J, Zhang XQ, Wang J et al (2004) Sprint training improves contractility in postinfarction rat myocytes: role of Na+/Ca2+ exchange. J Appl Physiol 97(2):484–490

    Article  CAS  PubMed  Google Scholar 

  153. Song YH, Li Y, Du J et al (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115(2):451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Starnes JW, Barnes BD, Olsen ME (2007) Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca-2+-induced dysfunction. J Appl Physiol 102(5):1793–1798

    Article  CAS  PubMed  Google Scholar 

  155. Stevens-Lapsley JE, Ye F, Liu M et al (2010) Impact of viral-mediated IGF-I gene transfer on skeletal muscle following cast immobilization. Am J Physiol Endocrinol Metab 299(5):730–740

    Article  CAS  Google Scholar 

  156. Ungerer M, Böhm JS, Elce JS et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptor in the failing human heart. Circulation 87(2):454–463

    Article  CAS  PubMed  Google Scholar 

  157. Van Tol BA, Huijsmans RJ, Kroon DW et al (2006) Effects of exercise training on cardiac performance, exercise capacity and quality of life in patient with heart failure: a meta-analysis. Eur J Heart Fail 8(8):841–850

    Article  PubMed  Google Scholar 

  158. Varin R, Mulder P, Richard V et al (1999) Exercise improves flow-mediated vasodilatation of skeletal muscle arteries in rats with chronic heart failure. Role of nitric oxide, prostanoids, and oxidant stress. Circulation 99(22):2951–2957

    Article  CAS  PubMed  Google Scholar 

  159. Vescovo G, Ravara B, Gobbo V et al (2005) Skeletal muscle fibers synthesis in heart failure: role of PGC-1alpha, calcineurin and GH. Int J Cardiol 104(3):298–306

    Article  PubMed  Google Scholar 

  160. Vescovo G, Volterrani M, Zennaro R et al (2000) Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 84(4):431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Voltarelli VA, Bechara LR, Bacurau AV et al (2014) Lack of beta2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J Cell Mol Med 18(6):1087–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wan W, Powers AS, Li J et al (2007) Effects of post-myocardial infarction exercise training on the renin-angiotensin-aldosterone system and cardiac function. Am J Med Sci 334(4):265–273

    Article  PubMed  Google Scholar 

  163. Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol 271(3 Pt 2):751–756

    Google Scholar 

  164. Wang HJ, Li YL, Zucker IH et al (2012) Exercise training prevents skeletal muscle afferent sensitization in rats with chronic heart failure. Am J Physiol Regul Integr Comp Physiol 302(11):1260–1270

    Article  CAS  Google Scholar 

  165. Wang HJ, Pan YX, Wan WZ et al (2010) Exercise training prevents the exaggerated exercise pressor reflex in rats with chronic heart failure. J Appl Physiol 108(5):1365–1375

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wang WZ, Gao L, Wang HJ et al (2008) Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am J Physiol Heart Circ Physiol 295(3):1216–1226

    Article  CAS  Google Scholar 

  167. Wang WZ, Gao L, Wang HJ et al (2009) Tonic glutamatergic input in the rostral ventrolateral medulla is increased in rats with chronic heart failure. Hypertension 53(2):370–374

    Article  CAS  PubMed  Google Scholar 

  168. Wiemer G, Itter G, Malinski T et al (2001) Decreased nitric oxide availability in normotensive and hypertensive rats with failing hearts after myocardial infarction. Hypertension 38(6):1367–1371

    Article  CAS  PubMed  Google Scholar 

  169. Wisløff U, Støylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients. Circulation 115(24):3086–3094

    Article  PubMed  Google Scholar 

  170. Wisløff U, Loennechen JP, Currie S et al (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54(1):162–174

    Article  PubMed  Google Scholar 

  171. Wyatt CN, Mustard KJ, Pearson SA et al (2007) AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098

    Article  CAS  PubMed  Google Scholar 

  172. Xia Z, Liu M, Wu Y et al (2006) N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelias cell apoptosis and restores eNOS expression. Eur J Pharmacol 550(1-3):134–142

    Article  CAS  PubMed  Google Scholar 

  173. Yang YT, McElligott MA (1989) Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J 261(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yanni J, Tellez JO, Maczewski M et al (2011) Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circ Heart Fail 4(4):496–508

    Article  CAS  PubMed  Google Scholar 

  175. Yoshida T, Galvez S, Tiwari S et al (2013) Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem 288(33):23823–23832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yu L, Romero DG, Gomez-Sanchez CE et al (2002) Steroidogenic enzyme gene expression. In the human brain. Mol Cell Endocrinol 190(1–2):9–17

    Article  CAS  PubMed  Google Scholar 

  177. Zhang K, Li YF, Patel KP (2001) Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure. Am J Physiol Heart Circ Physiol 281(3):995–1004

    Google Scholar 

  178. Zhang L, Du J, Hu Z et al (2009) IL-6 and serum amyloid a synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 20(3):604–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Zhang Y, Popovic ZB, Bibevski S et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699

    Article  CAS  PubMed  Google Scholar 

  180. Zhao L, Cheng G, Jin R et al (2016) Deletion of interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ Res 118(12):1918–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zheng H, Li YF, Cornish KG et al (2005) Exercise training improves endogenous nitric oxide mechanisms within the paraventricular nucleus in rats with heart failure. Am J Physiol Heart Circ Physiol 288(5):2332–2341

    Article  CAS  Google Scholar 

  182. Zheng H, Sharma NM, Liu X et al (2012) Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. Am J Physiol Regul Integr Comp Physiol 303(4):387–394

    Article  CAS  Google Scholar 

  183. Zimmerman MC, Lazartigues E, Lang JA et al (2002) Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91(11):1038–1045

    Article  CAS  PubMed  Google Scholar 

  184. Zoll J, Monassier L, Garnier A et al (2006) ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J Appl Physiol 101(2):385–391

    Article  CAS  PubMed  Google Scholar 

  185. Zucker IH, Patel KP, Schultz HD et al (2004) Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev 32(3):107–111

    Article  PubMed  Google Scholar 

  186. Zucker IH, Xiao L, Haack KK (2014) The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci 126(10):695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia C. Brum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ichige, M.H.A., Pereira, M.G., Brum, P.C., Michelini, L.C. (2017). Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_11

Download citation

Publish with us

Policies and ethics