Skip to main content

Hypertension and Exercise Training: Evidence from Clinical Studies

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Abstract

Hypertension is a worldwide prevalent disease, mostly manifested as its primary ethiology, characterized by a chronic, multifactorial, asymptomatic, and usually incurable state. It is estimated that more than one billion of the world population is hypertensive. Also, hypertension is the main cause of the two most frequent causes of death worldwide: myocardial infarction and stroke. Due to the necessity of the cardiovascular system to manage chronically increased levels of blood pressure, hypertension causes severe alterations in multiple organs, as the heart, vessels, kidneys, eyes and brain, thus increasing the risk of health complications. The heart is the main target organ and suffers several adaptations to compensate the increased blood pressure levels; nevertheless, long-term adaptations without proper control are extremely harmful to cardiovascular health. On the other hand, hypertension is a modifiable risk factor and its adequate control is highly dependent on lifestyle. Pharmacological treatment is of great success when adherence is high. Several classes of antihypertensive drugs are prescribed and can effectively maintain blood pressure within acceptable levels. However, non-pharmacological methods, as diet and exercise training, can not only optimize the treatment but also prevent or postpone hypertension development as well as its complications, acting as important complements to the ideal control of elevated blood pressure, and bringing together benefits beyond blood pressure decrease, as a general health status improvement and increased quality of life. There is consistent evidence that regular exercise training promotes several benefits when properly prescribed and practised, acting as “medicine” for dozens of chronic diseases. The effects of exercise training in blood pressure levels and in its mechanisms of control are of clinical relevance and efficacy. This chapter will describe the classical and recent results on the beneficial effects of different modalities of exercise training in the cardiovascular system of human primary hypertension, focusing on the mechanisms influenced by exercise training which help to decrease blood pressure and improve the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mills KT, Bundy JT, Kelly TN et al (2016) Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134(6):441–450

    Article  PubMed  PubMed Central  Google Scholar 

  2. McAloon CJ, Boylan LM, Hamborg T et al (2016) The changing face of cardiovascular disease 2000–2012: an analysis of the world health organization global health estimates data. Int J Cardiol 1(224):256–264

    Article  Google Scholar 

  3. Pedersen BK, Saltin B (2015) Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25(Suppl 3):1–72

    Article  PubMed  Google Scholar 

  4. Krieger EM (2013) Fisiopatologia da hipertensão primária. In: Krieger EM, Lopes HF et al (eds) Hipertensão arterial: bases fisiopatológicas e prática clínica. Atheneu, São Paulo, pp 243–252

    Google Scholar 

  5. Guyton AC (1990) Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Phys 259(5 Pt 2):R865–R877

    CAS  Google Scholar 

  6. Guyton AC (1991) Blood pressure control – special role of the kidneys and blood fluids. Science 252(5014):1813–1816

    Article  CAS  PubMed  Google Scholar 

  7. Malpas SC (2010) Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 90(2):513–557

    Article  CAS  PubMed  Google Scholar 

  8. Abboud FM, Harwani SC, Chapleau MW (2012) Autonomic neural regulation of the immune system. Implications for hypertension and cardiovascular disease. Hypertension 59(4):755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776

    Article  CAS  PubMed  Google Scholar 

  10. Kannel WB (1991) Left ventricular hypertrophy as a risk factor: the Framingham experience. J Hypertens Suppl 9(2):S3–S8

    Article  CAS  PubMed  Google Scholar 

  11. Devereux RB, Watchell K, Gerdts E et al (2004) Prognostic significance of left entricular mass change during treatment of hypertension. JAMA 292(19):2350–2356

    Article  CAS  PubMed  Google Scholar 

  12. Umpierre D, Stein R (2007) Hemodynamic and vascular effects of resistance training: implications for cardiovascular disease. Arq Bras Cardiol 89(4):256–262

    Article  PubMed  Google Scholar 

  13. Rocha AC, Moraes-Silva IC, Quinteiro HR et al (2012) Ajustes agudos, subagudos e crônicos da pressão arterial ao exercício resistido. ConScientia e Saúde 11(4):685–690

    Google Scholar 

  14. Fagard R (2006) Exercise is good for your blood pressure: effects of endurance training and resistance training. Clin Exp Pharmacol Physiol 33(9):853–856

    Article  CAS  PubMed  Google Scholar 

  15. Smith RC, Rutherford OM (1995) The role of metabolites in strength training. I A comparison of eccentric and concentric contractions. Eur J Appl Physiol Occup Physiol 71(4):332–336

    Article  CAS  PubMed  Google Scholar 

  16. Cononie CC, Graves JE, Pollock ML et al (1991) Effect of exercise training on blood pressure in 70-to 79-yr-old men and women. Med Sci Sports Exerc 23(4):505-511

    Article  Google Scholar 

  17. Simão R, Fleck SJ, Polito M et al (2005) Effects of resistance training intensity, volume, and session format on the postexercise hypotensive response. J Strength Cond Res 19(4):853–858

    PubMed  Google Scholar 

  18. Braith RW, Stewart KJ (2006) Resistance exercise training its role in the prevention of cardiovascular disease. Circulation 113(22):2642–2650

    Article  PubMed  Google Scholar 

  19. Cornelissen VA, Fagard RH, Coeckelberghs E et al (2011) Impact of resistance training on blood pressure and other cardiovascular risk factors a meta-analysis of randomized, controlled trials. Hypertension 58(5):950–958

    Article  CAS  PubMed  Google Scholar 

  20. Gambassi BB, Rodrigues B, de Jesus Furtado Almeida F et al (2016) Acute effect of resistance training without recovery intervals on the blood pressure of comorbidity-free elderly women: a pilot study. Sport Sci Health 12(3):315–320

    Article  Google Scholar 

  21. Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lewington S, Clarke R, Qizilbashi N et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    Article  PubMed  Google Scholar 

  23. Tatro DL, Dudley GA, Convertino VA (1992) Carotid-cardiac baroreflex response and LBNP tolerance following resistance training. Med Sci Sports Exerc 24(7):789-796

    Article  Google Scholar 

  24. Krieger EM, Silva GJJ, Negrao CE (2001) Effects of exercise training on baroreflex control of the cardiovascular system. Ann N Y Acad Sci 940(1):338–347

    Article  CAS  PubMed  Google Scholar 

  25. Loimaala A, Huikuri HV, Kööbi T et al (2003) Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes 52(7):1837–1842

    Article  CAS  PubMed  Google Scholar 

  26. Rowell LB (1991) Blood pressure regulation during exercise. Annals Med 23(3):329–333

    Article  CAS  Google Scholar 

  27. Inder JD, Carlson DJ, Dieberg G et al (2016) Isometric exercise training for blood pressure management: a systematic review and meta-analysis to optimize benefit. Hypertens Res 39(2):88–94

    Article  PubMed  Google Scholar 

  28. Van Assche T, Buys R, de Jaeger M et al (2016) One single bout of low intensity isometric handgrip exercise reduces blood pressure during daily activities in healthy pre- and hypertensive individuals. J Sports Med Phys Fitness 57(4):469–475

    PubMed  Google Scholar 

  29. McCartney N (1999) Acute responses to resistance training and safety. Med Sci Sports Exerc 31(1):31–37

    Article  CAS  PubMed  Google Scholar 

  30. MacDougall J, Tuxen D, Sale DG et al (1985) Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58(3):785–790

    Article  CAS  PubMed  Google Scholar 

  31. Fleck SJ, Dean LS (1987) Resistance-training experience and the pressor response during resistance exercise. J Appl Physiol 63(1):116–120

    Article  CAS  PubMed  Google Scholar 

  32. De Souza Nery S, Gomides RS, da Silva GV et al (2010) Intra-arterial blood pressure response in hypertensive subjects during low-and high-intensity resistance exercise. Clinics 65(3):271–277

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kluwer W, Williams L, Wilkins (eds) (2014) American College of Sports Medicine ACSM’s guidelines for exercise testing and prescription. J Can Chiropr Assoc 2014 58(3):328–329

    Google Scholar 

  34. Kelley GA, Kelley KS (2000) Progressive resistance exercise and resting blood pressure a meta-analysis of randomized controlled trials. Hypertension 35(3):838–843

    Article  CAS  PubMed  Google Scholar 

  35. Haslam DR, McCartney N, McKelvie RS et al (1988) Direct measurements of arterial blood pressure during formal weightlifting in cardiac patients. J Cardiopulm Rehab Prev 8(6):213–225

    Article  Google Scholar 

  36. Garber C, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  37. Moraes-Silva IC, Sartori M, de Angelis K (2010) Mecanismos hipotensores do exercício físico. Rev Bras Hipertensão 13:166–171

    Google Scholar 

  38. Vongpatanasin W, Wang Z, Arbique D et al (2011) Functional sympatholysis is impaired in hypertensive humans. J Physiol 589(5):1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laterza MC, de Matos LD, Trombetta IC et al (2007) Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 49(6):1298–1306

    Article  CAS  PubMed  Google Scholar 

  40. Pagani M, Somers V, Furlan R et al (1988) Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12(6):600–610

    Article  CAS  PubMed  Google Scholar 

  41. Somers VK, Conway J, Johnston J et al (1991) Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension. Lancet 337(8754):1363–1368

    Article  CAS  PubMed  Google Scholar 

  42. Hansen AH, Nielsen JJ, Saltin B et al (2010) Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. J Hypertens 28(6):1176–1185

    CAS  PubMed  Google Scholar 

  43. Hegde SM, Solomon SD (2015) Influence of physical activity on hypertension and cardiac structure and function. Curr Hypertens Rep 17(10):77

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rinder MR, Spina RJ, Peterson LR et al (2004) Comparison of effects of exercise and diuretic on left ventricular geometry, mass, and insulin resistance in older hypertensive adults. Am J Physiol Regqul Inteqr Comp Physiol 287(2):R360–R368

    Article  CAS  Google Scholar 

  45. Andersen LJ, Randers MB, Hansen PR et al (2014) Structural and functional cardiac adaptations to 6 months of football training in untrained hypertensive men. Scand J Med Sci Sports 24(Suppl 1):27–35

    Article  PubMed  Google Scholar 

  46. Turner MJ, Spina RJ, Kohrt WM et al (2000) Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension. J Gerontol Ser A: Biol Sci Med Sci 55(4):M245–M251

    Article  CAS  Google Scholar 

  47. Zheng H, Luo M, Shen Y et al (2011) Improved left ventricular diastolic function with exercise training in hypertension: a Doppler imaging study. Rehabil Res Pract 2011:497690

    PubMed  PubMed Central  Google Scholar 

  48. Guirado GN, Damatto RL, Matsubara BB et al (2012) Combined exercise training in asymptomatic elderly with controlled hypertension: effects on functional capacity and cardiac diastolic function. Med Sci Monit 18(7):CR461–CR465

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brook RD, Appel LJ, Rubenfire M et al (2013) Beyond medications and diet: alternative approaches to lowering blood pressure a scientific statement from the American heart association. Hypertension 61(6):1360–1383

    Article  CAS  PubMed  Google Scholar 

  50. Vissers D, Hens W, Taeymans J et al (2013) The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One 8(2):e56415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kelley GA, Kelley KS, Roberts S et al (2012) Comparison of aerobic exercise, diet or both on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Clin Nutr 31(2):156–167

    Article  CAS  PubMed  Google Scholar 

  52. Yang Z, Scott CA, Mao C et al (2014) Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med 44(4):487–499

    Article  PubMed  Google Scholar 

  53. Schein MH, Gavish B, Herz M et al (2001) Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study. J Hum Hypertens 15:271–278

    Article  CAS  PubMed  Google Scholar 

  54. Joseph CN, Porta C, Casucci G et al (2005) Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension 46:714–718

    Article  CAS  PubMed  Google Scholar 

  55. de B Daly M (1995) Aspects of the integration of the respiratory and cardiovascular system. In: Jordan D, Marshall J (eds) . Cardiovascular Regulation Portland Press, London, pp 15–35

    Google Scholar 

  56. Ferreira JB, Plentz RD, Stein C et al (2013) Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: a randomized controlled trial. Int J Cardiol 166(1):61–67

    Article  PubMed  Google Scholar 

  57. Ferreira JB, Hong V, Coelho O et al (2016) Inspiratory muscle training and aerobic training in the treatment of hypertension: baroreflex sensitivity, sympathetic activity and endothelial function responses. Hypertension 68(Suppl 1):AP161–AP161

    Google Scholar 

  58. Yeh GY, Wang C, Wayne PM et al (2008) The effect of Tai Chi exercise on blood pressure: a systematic review. Prev Cardiol 11(2):82–89

    Article  PubMed  Google Scholar 

  59. Lo HM, Yeh CY, Chang SC et al (2012) A Tai Chi exercise programme improved exercise behaviour and reduced blood pressure in outpatients with hypertension. Int J Nurs Pract 18(6):545–551

    Article  PubMed  Google Scholar 

  60. Pan X, Zhang Y, Tao S (2015) Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension. Clin Exp Hypertens 37(1):8–14

    Article  CAS  PubMed  Google Scholar 

  61. Pozadski P, Cramer H, Kuzdzal A et al (2014) Yoga for hypertension: a systematic review of randomized clinical trials. Complem Therap Med 22(3):511–522

    Article  Google Scholar 

  62. Roche LT, Hesse BM (2014) Application of an integrative yoga therapy programme in cases of essential arterial hypertension in public healthcare. Complement Ther Clin 20(4):285–290

    Article  Google Scholar 

  63. Gonzáles AI, Nery T, Fragnani SG et al (2016) Pilates exercise for hypertensive patients: a review of the literature. Altern Ther Health Med 22(5):38–43

    PubMed  Google Scholar 

  64. Martins-Meneses DT, Antunes HK, de Oliveira NR et al (2015) Mat Pilates training reduced clinical and ambulatory blood pressure in hypertensive women using antihypertensive medications. Int J Cardiol 179:262–268

    Article  PubMed  Google Scholar 

  65. Berglund G, Andersson O (1981) Beta-blockers or diuretics in hypertension? A six year follow-up of blood pressure and metabolic side effects. Lancet 317(8223):744–747

    Article  Google Scholar 

  66. Franse LV, Pahor M, Di Bari M et al (2000) Hypokalemia associated with diuretic use and cardiovascular events in the systolic hypertension in the elderly program. Hypertension 35(5):1025–1030

    Article  CAS  PubMed  Google Scholar 

  67. Neal B, MacMahon S, Chapman N (2000) Blood pressure lowering treatment trialists’ collaboration: effects of ace inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Lancet 356(9246):1955–1964

    Article  CAS  PubMed  Google Scholar 

  68. Riegger GA (1990) The effects of ACE inhibitors on exercise capacity in the treatment of congestive heart failure. J Cardiovasc Pharmacol 15(suppl 2):S41–S46

    Article  PubMed  Google Scholar 

  69. Contreras F, de la Parte MA, Cabrera J et al (2003) Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. Am J Ther 10(6):401–408

    Article  PubMed  Google Scholar 

  70. Leite LH, Lacerda AC, Balthazar CH et al (2007) Central AT(1) receptor blockade increases metabolic cost during exercise reducing mechanical efficiency and running performance in rats. Neuropeptides 41(3):189–194

    Article  CAS  PubMed  Google Scholar 

  71. Eisenach JC, Tong C (1991) Site of hemodynamic effects of intrathecal alpha 2-adrenergic agonists. Anesthesiology 74(4):766–771

    Article  CAS  PubMed  Google Scholar 

  72. Elliott WJ, Ram CVS (2011) Calcium channel blockers. J Clin Hypertens 13(9):687–689

    Article  CAS  Google Scholar 

  73. Koike Y, Kawabe T, Nishihara K et al (2016) Effects of azelnidipine and amlodipine on exercise-induced sympathoexcitation assessed by pupillometry in hypertensive patients. Hypertens Res 39(12):863–867

    Article  CAS  PubMed  Google Scholar 

  74. Bradley HA, Wiysonge CS, Volmink JA et al (2006) How strong is the evidence for use of beta-blockers as first-line therapy for hypertension? Systematic review and meta-analysis. J Hypertens 24(11):2131–2141

    Article  CAS  PubMed  Google Scholar 

  75. Lehtonen A (1985) Effect of beta blockers on blood lipid profile. Am heart Journal 109(5 Pt 2):1192–1196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana C. Moraes-Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moraes-Silva, I.C., Mostarda, C.T., Silva-Filho, A.C., Irigoyen, M.C. (2017). Hypertension and Exercise Training: Evidence from Clinical Studies. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Springer, Singapore. https://doi.org/10.1007/978-981-10-4304-8_5

Download citation

Publish with us

Policies and ethics