Skip to main content

Exosomes Mediate the Beneficial Effects of Exercise

  • Chapter
  • First Online:
Book cover Exercise for Cardiovascular Disease Prevention and Treatment

Abstract

It is known that moderate exercise can prevent the development of cardiovascular diseases, but the exact molecular mechanisms mediating cardioprotective effect of exercise remain unknown. Emerging evidence suggests that exercise has great impact on the biogenesis of exosomes, which have been found in both interstitial fluid and circulation, and play important roles in cellular communication. Exosomes carry functional molecules such as mRNAs, microRNA, and specific proteins, which can be used in the early diagnosis and targeted therapy of a variety of diseases. Our review focus on the current knowledge on exosome production, secretion, uptake and how exercise influence exosome content. We also highlight recent research development in exosome based approach for cardiac repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Swift DL, Lavie CJ, Johannsen NM et al (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 77:281–292

    Article  PubMed  Google Scholar 

  2. Tao L, Bei Y, Zhang H et al (2015) Exercise for the heart: signaling pathways. Oncotarget 6:20773–20784

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol 22(11):2531–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boström P, Mann N, Wu J et al (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grochowska E, Jarzyna R (2014) Physical activity in the prevention and treatment of diseases of affluence—the key role of AMP-activated protein kinase (AMPK). Postepy Hig Med Dosw 68:1114–1128

    Article  Google Scholar 

  6. Uchida S, Dimmeler S (2015) Exercise controls non-coding RNAs. Cell Metab 21:511–512

    Article  CAS  PubMed  Google Scholar 

  7. Frühbeis C, Helmig S, Tug S et al (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239

    Google Scholar 

  8. Vrijsen KR, Maring JA, Chamuleau SA et al (2016) Exosomes from Cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5:2555–2565

    Article  CAS  PubMed  Google Scholar 

  9. Vrijsen KR, Sluijter JP, Schuchardt MW et al (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14:1064–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Zhang L, Li Y et al (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu B, Kim HW, Gong M et al (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360

    Article  PubMed  Google Scholar 

  12. Zhao Y, Sun X, Cao W et al (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:761643

    Article  PubMed  PubMed Central  Google Scholar 

  13. Disabella V, Sherman C (1998) Your guide to exercising with asthma. Phys Sportsmed 26:85

    Article  CAS  PubMed  Google Scholar 

  14. US Department of Health and Human Services NIoH (2006) Your guide to physical activity and your heart, NIH Publication vol (06-5714). US Department of Health and Human Services NIoH, Bethesda

    Google Scholar 

  15. Chaturvedi P, Kalani A, Medina I et al (2015) Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 19:2153–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mooren FC, Viereck J, Kruger K et al (2014) Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol 306(4):20

    Article  Google Scholar 

  17. Aoi W, Ichikawa H, Mune K et al (2013) Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol 4:80

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nielsen S, Akerstrom T, Rinnov A et al (2014) The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One 9(2):e87308

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kilian Y, Wehmeier UF, Wahl P et al (2016) Acute response of circulating vascular regulating MicroRNAs during and after high-intensity and high-volume cycling in children. Front Physiol 7:92

    Article  PubMed  PubMed Central  Google Scholar 

  20. Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C et al (2014) Sorting it out: regulation of exosome loading. Semin Cancer Biol 28:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gangoda L, Boukouris S, Liem M et al (2015) Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 15:260–271

    Article  CAS  PubMed  Google Scholar 

  22. Barile L, Moccetti T, Marban E et al (2016) Roles of exosomes in cardioprotection. Eur Heart J pii:ehw304

    Article  Google Scholar 

  23. Garcia NA, Moncayo-Arlandi J, Sepulveda P et al (2016) Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 109:397–408

    Article  CAS  PubMed  Google Scholar 

  24. Caradec J, Kharmate G, Hosseini-Beheshti E et al (2014) Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem 47:1286–1292

    Article  CAS  PubMed  Google Scholar 

  25. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lasser C, Alikhani VS, Ekstrom K et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:1479–5876

    Article  Google Scholar 

  27. Record M, Carayon K, Poirot M et al (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1:108–120

    Article  Google Scholar 

  28. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8:1649–1658

    Article  CAS  PubMed  Google Scholar 

  31. Emanueli C, Shearn AI, Angelini GD et al (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30

    Article  CAS  Google Scholar 

  32. Conley A, Minciacchi VR, Lee DH et al (2016) High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biol 14:305–316

    Google Scholar 

  33. Oksvold MP, Kullmann A, Forfang L et al (2014) Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther 36:847–862.e1

    Article  CAS  PubMed  Google Scholar 

  34. Tauro BJ, Greening DW, Mathias RA et al (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 12:587–598

    Article  CAS  PubMed  Google Scholar 

  35. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:1471–2407

    Article  Google Scholar 

  36. Parolini I, Federici C, Raggi C et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    Article  CAS  PubMed  Google Scholar 

  38. Lv LH, Wan YL, Lin Y et al (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen L, Wang Y, Pan Y et al (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431:566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Safari S, Malekvandfard F, Babashah S et al (2016) Mesenchymal stem cell-derived exosomes: a novel potential therapeutic avenue for cardiac regeneration. Cell Mol Biol 62:66–73

    CAS  PubMed  Google Scholar 

  41. Baggish AL, Park J, Min PK et al (1985) Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol 116:522–531

    Article  Google Scholar 

  42. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641

    Article  Google Scholar 

  43. Escrevente C, Keller S, Altevogt P et al (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:1471–2407

    Article  Google Scholar 

  44. Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lo SC, Hung CY, Lin DT et al (2006) Involvement of platelet glycoprotein Ib in platelet microparticle mediated neutrophil activation. J Biomed Sci 13:787–796

    Article  CAS  PubMed  Google Scholar 

  46. Leroyer AS, Rautou PE, Silvestre JS et al (2008) CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 52:1302–1311

    Article  CAS  PubMed  Google Scholar 

  47. Soleti R, Martinez MC (2012) Sonic Hedgehog on microparticles and neovascularization. Vitam Horm 88:395–438

    Article  CAS  PubMed  Google Scholar 

  48. Pironti G, Strachan RT, Abraham D et al (2015) Circulating Exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131:2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266

    Article  CAS  PubMed  Google Scholar 

  50. Shukla D, Liu J, Blaiklock P et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    Article  CAS  PubMed  Google Scholar 

  51. Barres C, Blanc L, Bette-Bobillo P et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705

    Article  CAS  PubMed  Google Scholar 

  52. Ghosh A, Li W, Febbraio M et al (2008) Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 118:1934–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei X, Liu C, Wang HW et al (2016) Surface Phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PloS one 11(1):e0147360

    Article  PubMed  PubMed Central  Google Scholar 

  54. Malik ZA, Liu TT, Knowlton AA (2016) Cardiac myocyte exosome isolation. Methods Mol Biol 1448:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greening DW, Xu R, Ji H et al (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209

    Article  CAS  PubMed  Google Scholar 

  56. Tang XL, Li Q, Rokosh G et al (2016) Long-term outcome of administration of c-kit(POS) cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become Cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res 118:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pagani FD, DerSimonian H, Zawadzka A et al (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41:879–888

    Article  PubMed  Google Scholar 

  58. Klein HM, Ghodsizad A, Marktanner R et al (2007) Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg Forum 10:E66–E69

    Article  CAS  PubMed  Google Scholar 

  59. Manginas A, Goussetis E, Koutelou M et al (2007) Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheter Cardiovasc Interv 69:773–781

    Article  PubMed  Google Scholar 

  60. Carvalho E, Verma P, Hourigan K et al (2015) Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med 10:1025–1043

    Article  CAS  PubMed  Google Scholar 

  61. Gallet R, Dawkins J, Valle J et al (2016) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 38(3):201–211

    Google Scholar 

  62. Xiao J, Pan Y, Li XH et al (2016) Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 7:181

    Google Scholar 

  63. Kishore R, Khan M (2016) Cardiac cell-derived exosomes: changing face of regenerative biology. Eur Heart J 38:212–215

    Google Scholar 

  64. Khan M, Nickoloff E, Abramova T et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackie AR, Klyachko E, Thorne T et al (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahoo S, Klychko E, Thorne T et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109:724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feng Y, Huang W, Wani M et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9:e88685

    Article  PubMed  PubMed Central  Google Scholar 

  68. Barile L, Lionetti V, Cervio E et al (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541

    Article  CAS  PubMed  Google Scholar 

  69. Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–619

    Article  CAS  Google Scholar 

  70. van Balkom BW, de Jong OG, Smits M et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006

    Article  PubMed  Google Scholar 

  71. Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lyu L, Wang H, Li B et al (2015) A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol 89:268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gambim MH, do Carmo Ade O, Marti L et al (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 11:R107

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang X, Huang W, Liu G et al (2014) Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 74:139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li J, Rohailla S, Gelber N et al (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109:014–0423

    Article  Google Scholar 

  76. Matsumoto S, Sakata Y, Suna S et al (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113:322–326

    Article  CAS  PubMed  Google Scholar 

  77. Jansen F, Yang X, Proebsting S et al (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3:e001249

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang F, Long G, Zhao C et al (2013) Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med 11:1479–5876

    Google Scholar 

  79. Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292:H3052–H3056

    Article  CAS  PubMed  Google Scholar 

  80. de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1:18396

    Article  Google Scholar 

  81. Halkein J, Tabruyn SP, Ricke-Hoch M et al (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123:2143–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang F, Long G, Zhao C et al (2014) Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 9:e105734

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  84. Muroya S, Ogasawara H, Hojito M (2015) Grazing affects Exosomal circulating MicroRNAs in cattle. PLoS One 10:e0136475

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fernandes T, Barauna VG, Negrao CE et al (2015) Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol 309:H543–H552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Melo SF, Barauna VG, Neves VJ et al (2015) Exercise training restores the cardiac microRNA-1 and -214 levels regulating Ca2+ handling after myocardial infarction. BMC Cardiovasc Disord 15:015–0156

    Article  Google Scholar 

  87. Yengo CM, Zimmerman SD, McCormick RJ et al (2012) Exercise training post-MI favorably modifies heart extracellular matrix in the rat. Med Sci Sports Exerc 44:1005–1012

    Article  CAS  PubMed  Google Scholar 

  88. Locke M, Noble EG (1995) Stress proteins: the exercise response. Can J Appl Physiol 20:155–167

    Google Scholar 

  89. Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Google Scholar 

  90. Esposito F, Ronchi R, Milano G et al (2011) Myocardial tolerance to ischemia-reperfusion injury, training intensity and cessation. Eur J Appl Physiol 111:859–868

    Article  PubMed  Google Scholar 

  91. Morán M, Blazquez I, Saborido A et al (2005) Antioxidants and ecto-5′-nucleotidase are not involved in the training-induced cardioprotection against ischaemia-reperfusion injury. Exp Physiol 90:507–517

    Google Scholar 

  92. Hamilton KL, Powers SK, Sugiura T et al (2001) Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol 281:H1346–H1352

    Article  CAS  PubMed  Google Scholar 

  93. Paroo Z, Haist JV, Karmazyn M et al (2002) Exercise improves Postischemic Cardiac function in males but not females consequences of a novel sex-specific heat shock protein 70 response. Circ Res 90:911–917

    Google Scholar 

  94. Staib JL, Quindry JC, French JP et al (2007) Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. Am J Physiol Regul Integr Comp Physiol 292:R432–R439

    Google Scholar 

  95. Gillum T, Kuennen M, Gourley C et al (2013) Sex differences in heat shock protein 72 expression in peripheral blood mononuclear cells to acute exercise in the heat. Int J Endocrinol 11(4), e8739

    Google Scholar 

  96. Njemini R, Bautmans I, Onyema OO et al (2011) Circulating heat shock protein 70 in health, aging and disease. BMC Immunol 12:24

    Google Scholar 

  97. Starnes JW, Taylor RP, Park Y (2003) Exercise improves postischemic function in aging hearts. Am J Physiol Heart Circ Physiol 285:H347–H351

    Google Scholar 

  98. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70 A novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Google Scholar 

  99. Ogura Y, Naito H, Akin S et al (2008) Elevation of body temperature is an essential factor for exercise-increased extracellular heat shock protein 72 level in rat plasma. Am J Physiol Regul Integr Comp Physiol 294:R1600–R1607

    Google Scholar 

  100. Walsh RC, Koukoulas I, Garnham A et al (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Frühbeis C, Helmig S, Tug S et al (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239

    Google Scholar 

  102. Wang X, Gu H, Huang W et al (2016) Hsp20-mediated activation of exosome biogenesis in Cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65:3111–3128 

    Google Scholar 

  103. Zhang X, Wang X, Zhu H et al (2012) Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One 7:e32765

    Google Scholar 

  104. Fehrenbach E, Niess AM, Schlotz E et al (1985) Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol 89:704–710

    Article  Google Scholar 

  105. Fehrenbach E, Passek F, Niess AM et al (2000) HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 32:592–600

    Article  CAS  PubMed  Google Scholar 

  106. Febbraio MA, Mesa JL, Chung J et al (2004) Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9:390–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boluyt MO, Brevick JL, Rogers DS et al (2006) Changes in the rat heart proteome induced by exercise training: increased abundance of heat shock protein hsp20. Proteomics 6:3154–3169

    Article  CAS  PubMed  Google Scholar 

  108. Jammes Y, Steinberg JG, Delliaux S et al (2009) Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med 266:196–206

    Article  CAS  PubMed  Google Scholar 

  109. Brerro-Saby C, Delliaux S, Steinberg JG et al (2010) Combination of two oxidant stressors suppresses the oxidative stress and enhances the heat shock protein 27 response in healthy humans. Metabolism 59:879–886

    Article  CAS  PubMed  Google Scholar 

  110. Noakes TD (1987) Heart disease in marathon runners: a review. Med Sci Sports Exerc 19:187–194

    Article  CAS  PubMed  Google Scholar 

  111. Wei X, Liu X, Rosenzweig A (2015) What do we know about the cardiac benefits of exercise? Trends Cardiovasc Med 25:529–536

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y. et al. (2017). Exosomes Mediate the Beneficial Effects of Exercise. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Springer, Singapore. https://doi.org/10.1007/978-981-10-4304-8_18

Download citation

Publish with us

Policies and ethics