Skip to main content

Classical Techniques and Recent Developments

  • Chapter
  • First Online:
Digital Audio Watermarking

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 809 Accesses

Abstract

In this chapter, we introduce the research and development works for robust audio watermarking over the past decades. An audio watermarking system could be categorized into a time or transform domain system, simply by examining whether the watermarks are embedded in the original or transformed audio samples Hua et al. (Signal Process 128:222–242, 2016) [1]. Here, we take a different perspective to review audio watermarking techniques. We start from introducing the three classical techniques, i.e., echo hiding, spread spectrum, and quantization index modulation, followed by their further improvements and advanced designs. For the advanced designs, we categorized them according to what the watermarking systems are aimed for, instead of in which domain the watermarks are embedded. We also introduce several novel perspectives on audio watermarking at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here DTFT is used instead of DFT for the ease of analysis and notation. Note that in practical implementations, the fast algorithm of DFT, i.e., fast Fourier transform (FFT) is used.

References

  1. Hua G, Huang J, Shi YQ, Goh J, Thing VLL (2016) Twenty years of digital audio watermarking - a comprehensive review. Signal Process 128:222–242

    Article  Google Scholar 

  2. Gruhl D, Bender W (1996) Echo hiding. In: Proceedings of information hiding workshop, Cambridge, U.K., pp 295–315

    Google Scholar 

  3. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687

    Article  Google Scholar 

  4. Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  5. Oh HO, Seok JW, Hong JW, Youn DH (2001) New echo embedding technique for robust and imperceptible audio watermarking. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp 1341–1344

    Google Scholar 

  6. Kim HJ, Choi YH (2003) A novel echo-hiding scheme with backward and forward kernels. IEEE Trans Circuits Syst Video Technol 13(8):885–889

    Article  Google Scholar 

  7. Childers DG, Skinner DP, Kemerait RC (1977) The cepstrum: a guide to processing. Proc IEEE 65(10):1428–1443

    Article  Google Scholar 

  8. Oppenheim AV, Schafer RW (2004) From frequency to quefrency: a history of the cepstrum. IEEE Signal Process Mag 21(5):95–106

    Article  Google Scholar 

  9. Ko BS, Nishimura R, Suzuki Y (2005) Time-spread echo method for digital audio watermarking. IEEE Trans Multimed 7(2):212–221

    Article  Google Scholar 

  10. Hua G, Goh J, Thing VLL (2015) Cepstral analysis for the application of echo-based audio watermark detection. IEEE Trans Inf Forensics Secur 10(9):1850–1861

    Article  Google Scholar 

  11. Xiang Y, Peng D, Natgunanathan I, Zhou W (2011) Effective pseudonoise sequence and decoding function for imperceptibility and robustness enhancement in time-spread echo-based audio watermarking. IEEE Trans Multimed 13(1):2–13

    Article  Google Scholar 

  12. Xiang Y, Natgunanathan I, Peng D, Zhou W, Yu S (2012) A dual-channel time-spread echo method for audio watermarking. IEEE Trans Inf Forensics Secur 7(2):383–392

    Article  Google Scholar 

  13. Hua G, Goh J, Thing VLL (2015) Time-spread echo-based audio watermarking with optimized imperceptibility and robustness. IEEE/ACM Trans Audio Speech Lang Process 23(2):227–239

    Article  Google Scholar 

  14. Hu P, Peng D, Yi Z, Xiang Y (2016) Robust time-spread echo watermarking using characteristics of host signals. Electron Lett 52(1):5–6

    Article  Google Scholar 

  15. Kirovski D, Malvar HS (2003) Spread-spectrum watermarking of audio signals. IEEE Trans Signal Process 51(4):1020–1033

    Article  MathSciNet  Google Scholar 

  16. Malvar HS, Florencio DAF (2003) Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Trans Signal Process 51(4):898–905

    Article  MathSciNet  Google Scholar 

  17. Valizadeh A, Wang ZJ (2011) Correlation-and-bit-aware spread spectrum embedding for data hiding. IEEE Trans Inf Forensics Secur 6(2):267–282 ISSN 1556–6013

    Article  Google Scholar 

  18. Yeo IK, Kim HJ (2003) Modified patchwork algorithm: a novel audio watermarking scheme. IEEE Speech Audio Process 11(4):381–386

    Article  Google Scholar 

  19. Kang H, Yamaguchi K, Kurkoski BM, Yamaguchi K, Kobayashi K (2008) Full-index-embedding patchwork algorithm for audio watermarking. IEICE Trans E91-D(11):2731–2734

    Google Scholar 

  20. Kalantari NK, Akhaee MA, Ahadi SM, Amindavar H (2009) Robust multiplicative patchwork method for audio watermarking. IEEE Trans Audio Speech Lang Process 17(6):1133–1141

    Article  Google Scholar 

  21. Natgunanathan I, Xiang Y, Rong Y, Zhou W, Guo S (2012) Robust patchwork-based embedding and decoding scheme for digital audio watermarking. IEEE Trans Audio Speech Lang Process 20(8):2232–2239

    Article  Google Scholar 

  22. Xiang Y, Natgunanathan I, Guo S, Zhou W, Nahavandi S (2014) Patchwork-based audio watermarking method robust to de-synchronization attacks. IEEE/ACM Trans Audio Speech Lang Process 22(9):1413–1423

    Article  Google Scholar 

  23. Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3.4):313–336

    Article  Google Scholar 

  24. Arnold M (2000) Audio watermarking: features, applications and algorithms. In: IEEE international conference on multimedia and expo, 2000, (ICME 2000), vol 2. IEEE, pp 1013–1016

    Google Scholar 

  25. Spanias A, Painter T, Atti V (2007) Audio signal processing and coding. Wiley, New Jersey chapter 5

    Book  Google Scholar 

  26. Lie WN, Chang LC (2006) Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Trans Multimed 8(1):46–59

    Article  Google Scholar 

  27. Megas D, Serra-Ruiz J, Fallahpour M (2010) Efficient self-synchronised blind audio watermarking system based on time domain and fft amplitude modification. Signal Process 90(12):3078–3092

    Article  MATH  Google Scholar 

  28. Lei B, Soon IY, Tan EL (2013) Robust svd-based audio watermarking scheme with differential evolution optimization. IEEE Trans Audio Speech Lang Process 21(11):2368–2377

    Article  Google Scholar 

  29. Wang XY, Zhao H (2006) A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans Signal Process 54(12):4835–4840

    Article  Google Scholar 

  30. Wang XY, Niu PP, Yang HY (2009) A robust, digital-audio watermarking method. IEEE Multimed 16(3):60–69

    Article  Google Scholar 

  31. Wang XY, Qi W, Niu PP (2007) A new adaptive digital audio watermarking based on support vector regression. IEEE Trans Audio Speech Lang Process 15(8):2270–2277

    Article  Google Scholar 

  32. Barni M (2005) Effectiveness of exhaustive search and template matching against watermark desynchronization. IEEE Signal Process Lett 12(2):158–161

    Article  MathSciNet  Google Scholar 

  33. Kang X, Yang R, Huang J (2011) Geometric invariant audio watermarking based on an lcm feature. IEEE Trans Multimed 13(2):181–190

    Article  Google Scholar 

  34. Pun CM, Yuan XC (2013) Robust segments detector for de-synchronization resilient audio watermarking. IEEE Trans Audio Speech Lang Process 21(11):2412–2424

    Article  Google Scholar 

  35. Li W, Xue X, Lu P (2006) Localized audio watermarking technique robust against time-scalecale modification. IEEE Trans Multimed 8(1):60–69

    Article  Google Scholar 

  36. Xiang Y, Natgunanathan I, Rong Y, Guo S (2015) Spread spectrum-based high embedding capacity watermarking method for audio signals. IEEE/ACM Trans Audio Speech Lang Process 23(12):2228–2237

    Article  Google Scholar 

  37. Fallahpour M, Megas D (2015) Audio watermarking based on fibonacci numbers. IEEE/ACM Trans Audio Speech Lang Process 23(8):1273–1282 ISSN 2329–9290

    Article  Google Scholar 

  38. Wang S, Unoki M (2015) Speech watermarking method based on formant tuning. IEICE Trans Inf Syst E98-D(1):29–37

    Google Scholar 

  39. Wang S, Miyauchi R, Unoki M, Kim NS (2015) Tampering detection scheme for speech signals using formant enhancement based watermarking. J Inf Hiding Multimed Signal Process 6(6):1264–1283

    Google Scholar 

  40. Nishimura R (2012) Audio watermarking using spatial masking and ambisonics. IEEE Trans Audio Speech Lang Process 20(9):2461–2469

    Article  Google Scholar 

  41. Unoki M, Hamada D (2010) Method of digital-audio watermarking based on cochlear delay characteristics. Int J Inno Comput Inf Control 6(3(B)):1325–1346

    Google Scholar 

  42. Unoki M, Miyauchi R (2013) Multimedia information hiding technologies and methodologies for controlling data, Method of digital-audio watermarking based on cochlear delay characteristics. IGI Global, pp 42–70

    Google Scholar 

  43. Unoki M, Imabeppu K, Hamada D, Haniu A, Miyauchi R (2011) Embedding limitations with digital-audio watermarking method based on cochlear delay characteristics. J Inf Hiding Multimed Signal Process 2(1):1–23

    Google Scholar 

  44. Unoki M, Miyauchi R (2015) Robust, blindly-detectable, and semi-reversible technique of audio watermarking based on cochlear delay. IEICE Trans Inf Syst E98-D(1):38–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Xiang, Y., Hua, G., Yan, B. (2017). Classical Techniques and Recent Developments. In: Digital Audio Watermarking. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-10-4289-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4289-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4288-1

  • Online ISBN: 978-981-10-4289-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics