Kinetic Instability of the Ion Acoustic Mode in Permeating Plasma of Electron–Positron and Ion

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 435)


Kinetic instability of the ion acoustic mode is observed in permeating plasma of electron, positron, and ion in a similar background plasma system. The linear growth of the wave is excited only when the streaming speed of the flowing plasma reaches a critical speed for all temperature ratios. Presence of positron, however, only shows a quantitative modification in the critical speed of the flowing plasma.


Kinetic instability Ion acoustic mode Electron–positron plasma Streaming instability Growth rate 


  1. 1.
    Ruffini, R., Vereshchagin, G., Xue, S.S.: Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Reports 487, 1–140 (2010)CrossRefGoogle Scholar
  2. 2.
    Abdo, A.A., et al.: Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science 323, 1688–1693 (2009)CrossRefGoogle Scholar
  3. 3.
    Lyne, A.G., et al.: A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303, 1153–1157 (2004)Google Scholar
  4. 4.
    Tavani, M., et al.: Discovery of powerful gamma-ray flares from the crab nebula. Science 331, 736–739 (2011)CrossRefGoogle Scholar
  5. 5.
    Wardle, J.F.C., Homan, D.C., Ojha, R., Roberts, D.H.: Electron-positron jets associated with the quasar 3C279. Nat. 395, 457–461 (1998)CrossRefGoogle Scholar
  6. 6.
    Istomin, Y.N., Sobyanin, D.N.: Electron–positron plasma generation in a magnetar magnetosphere. Astro. Letts. 33, 660–672 (2007)CrossRefGoogle Scholar
  7. 7.
    Beloborodov, A.M.: Electron–positron flows around magnetars. Astrophys. J. 777, 114–132 (2013)CrossRefGoogle Scholar
  8. 8.
    Jao, C.S., Hau, L.N.: Formation of electrostatic solitons and hole structures in pair plasmas. Phys. Rev. E. 86, 056401(1-8) (2012)Google Scholar
  9. 9.
    Lu, G., Liu, Y., Yu, M.Y.: Exact electrostatic waves in electron–positron plasmas. Phys. Scr. 81, 045503(1-5) (2010) Google Scholar
  10. 10.
    Gary, S.P., Karimabadi, H.: Fluctuations in electron–positron plasmas: linear theory and implications for turbulence. Phys. Plasmas 16, 042104(1-7) (2009)Google Scholar
  11. 11.
    Saleem, H., Vranjes, J., Poedts, S.: On some properties of linear and nonlinear waves in pair-ion plasmas. Phys. Letts. A 350, 375–379 (2006)CrossRefGoogle Scholar
  12. 12.
    Stenflo, L., Shukla, P.K., Yu, M.Y.: Nonlinear propagation of electromagnetic waves in magnetized electron–positron plasmas. Astrophys. Space Sci. 117, 303–308 (1985)CrossRefMATHGoogle Scholar
  13. 13.
    Baluku, T.K., Hellberg, M.A.: Ion acoustic solitary waves in an electron–positron–ion plasma with non-thermal electrons. Plasma Phys. Control Fus. 53, 095007(1-16) (2011)Google Scholar
  14. 14.
    Mahmood, S., Mushtaq, A.H.: Ion acoustic solitary wave in homogeneous magnetized electron–positron–ion plasmas. New J. Phys. 5, 28.1–28.10 (2003)Google Scholar
  15. 15.
    Bahamida, S., Annou, K., Annou, R.: Ion-acoustic solitons in electron positron non-thermal plasma. In: 34th EPS Conference on Plasma Physics, vol. 31F, pp. 4.139(1-4) (2007)Google Scholar
  16. 16.
    Gill, T.S., Singh, A., Kaur, H., Saini, N.S., Bala, P.: Ion-acoustic solitons in weakly relativistic plasma containing electron–positron and ion. Phys. Letts. A 361, 364–367 (2007)CrossRefGoogle Scholar
  17. 17.
    Jao, C.S., Hau, L.N.: Two-dimensional electrostatic solitary structures in electron–positron plasmas. New J. Phys. 17, 053047 (1-10) (2015)Google Scholar
  18. 18.
    Verdon, M.W., Melrose, D.B.: Wave dispersion in a counter streaming, cold, magnetized, electron–positron plasma. Phys. Rev. E 77, 046403(1-10) (2008)Google Scholar
  19. 19.
    Bulanov, S.S., Fedotov, A.M., Pegoraro, F.: Damping of electromagnetic waves due to electron–positron pair production. Phys. Rev. E 71, 016404(1-11) (2005)Google Scholar
  20. 20.
    Liu, Y., Liu, S.Q., Dai, B.: Modulational behavior of electromagnetic waves in ultra-relativistic electron–positron plasmas. Astrophys. Space Sci. 346, 149–153 (2013)CrossRefMATHGoogle Scholar
  21. 21.
    Hu, Q.L., Xiao, G.L., Yu, X.G., Wang, Z.G., Luo, X.B.: Modulational instability of ultra-intense linearly polarized laser pulse in electron–positron plasmas. Phys. Letts. A 377, 2594–2597 (2013)CrossRefMATHGoogle Scholar
  22. 22.
    Mushtaq, A., Khan, R.: Linear and nonlinear studies of two-stream instabilities in electron–positron–ion plasmas with quantum corrections. Phys. Scr. 78, 015501(1-5) (2008)Google Scholar
  23. 23.
    Pedersen, T.S., et al.: Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 035010(1-13) (2012)Google Scholar
  24. 24.
    Sarri, G., et al.: Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6(6747), 1–8 (2015)Google Scholar
  25. 25.
    Helander, P.: Microstability of magnetically confined electron–positron plasmas. Phys. Rev. Lett. 113, 135003(1-4) (2014)Google Scholar
  26. 26.
    Vranjes, J., Poedts, S., Ehsan, Z.: Kinetic instability of ion acoustic mode in permeating plasmas. Phys. Plasmas 16, 074501(1-4) (2009)Google Scholar
  27. 27.
    Vranjes, J., Poedts, S.: Ion acoustic mode in permeating plasmas. J. Phys. Conf. Series 511, 012010(1-4) (2010)Google Scholar
  28. 28.
    Bittencourt, J.A.: Fundamentals of Plasma Physics. Springer, Berlin (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsSikkim Manipal Institute of TechnologyRangpoIndia

Personalised recommendations