Harvesting Insolation Using Mo–W–Sulfide Compound Nanoparticle Semiconductor as Photocatalyst: A Pollution Controlling Material

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 435)

Abstract

In this report, nanoparticles of Mo–W–sulfide compound, confirmed by XRD, SEM and EDX spectra, have been successfully synthesized using solid-state reactions. The as-synthesized material is found to be an efficient photocatalyst that can utilize a broad range of the solar spectra due to the presence of multiple optical band gaps (BG) that have been observed by analyzing UV–Visible spectra. The compound semiconductor nanoparticles show better photocatalytic activity than MoS2 nanoparticles because of the combined effect of Mo and W leading to greater exciton pair generation. It is observed that the as-synthesized compound nanoparticles degrade dye methyl orange and rhodamine B very efficiently with 97% degradation in just 90 min. The as-synthesized compound can be a promising material to control dye-pollution through photocatalysis using the higher-intensity part of the solar spectrum, and thus providing an advantageous, eco-friendly and low-cost process.

Keywords

Compound semiconductor Multiple BG Photocatalysis Rate constant Energy harvesting 

References

  1. 1.
    Kaur, J., Bansal, S., Singhal, S.: Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys. B 416, 33–38 (2013). doi: 10.1016/j.physb.2013.02.005 CrossRefGoogle Scholar
  2. 2.
    Chen, T., Zheng, Y., Lin, J.M., Chena, G.: Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 997–1003 (2008). doi: 10.1016/j.jasms.2008.03.008 CrossRefGoogle Scholar
  3. 3.
    Carmen, Z., Daniela, S.: Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. In: Puzyn, T. (ed.) Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update. ISBN: 978-953-307-917-2 (2012). InTech, Available from: http://www.intechopen.com/books/organic-pollutants-ten-yearsafter-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes-characteristicspolluting-effects-and-separation-elimination-procedures-from-in. Accessed 05 Aug 2016 (General Internet site)
  4. 4.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). doi: 10.1103/PhysRevLett.105.136805
  5. 5.
    Tang, Q., Zhou, Z.: Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58, 1244–1315 (2013). doi: 10.1016/j.pmatsci.2013 CrossRefGoogle Scholar
  6. 6.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). doi: 10.1038/NNANO.2010.279 CrossRefGoogle Scholar
  7. 7.
    Chang, K., Chen, W.: L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi: 10.1021/nn200659w CrossRefGoogle Scholar
  8. 8.
    Shanmugam, M., Bansal, T., Durcan, C.A., Yu, B.: MoS2/TiO2 nanoparticle composite bulk heterojunction solar cell. In Proceedings of 12th IEEE International Conference on Nanotechnology (IEEE-NANO) (2012)Google Scholar
  9. 9.
    Jin, W., Yeh, P.C., Zaki, N., Zhang, D., Sadowski, J.T., Al-Mahboob, A., Zande, A.M., Chenet, D.A., Dadap, J.I., Herman, I.P., Sutter, P., Hone, J., Osgood, R.M.: Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 10680 (2013). doi: 10.1103/PhysRevLett.111.106801
  10. 10.
    Xiang, Q., Yu, J., Jaroniec, M.: Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012). doi: 10.1021/ja302846n CrossRefGoogle Scholar
  11. 11.
    Zong, X., Wu, G., Yan, H., Ma, G., Shi, J., Wen, F., Wang, L., Li, C.: Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114, 1963–1968 (2010). doi: 10.1021/jp904350e CrossRefGoogle Scholar
  12. 12.
    Rao, C.N.R., Nag, A.: Inorganic analogues of graphene. Eur. J. Inorg. Chem. 2010(27), 4244–4250 (2010). doi: 10.1002/ejic.201000408 CrossRefGoogle Scholar
  13. 13.
    Matte, H.S.S.R., Gomathi, A., Manna, A.K., Late, D.J., Datta, R., Pati, S.K., Rao, C.N.R.: MoS2 and WS2 analogues of graphene. Angew. Chem. 122(24), 4153–4156, (2010). doi: 10.1002/ange.201000009
  14. 14.
    Chetri, P., Basyach, P., Choudhury, A.: Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: an experimental and DFT investigation. Chem. Phys. 434, 1–10 (2014). doi: 10.1016/j.chemphys.2014.02.007 CrossRefGoogle Scholar
  15. 15.
    Paul, S., Choudhury, A.: Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania. Appl. Nanosci. 4, 839–847 (2014). doi: 10.1007/s13204-013-0264-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations