Skip to main content

Power Quality Improvement of Microgrid with Cascaded Controller-Based PMSG Used in Wind Turbines

  • Conference paper
  • First Online:
Book cover Advances in Smart Grid and Renewable Energy

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 435))

  • 1727 Accesses

Abstract

Due to increasing power demand and environmental aspects, power generation from renewable energy sources that have been assumed to be a different source of energy can bring new challenges. Globally, an increasing number of wind energy generation systems are integrated into the electrical power network. In the wind turbine the reduction of various negative impacts of power quality issues such as voltage sag, swell, power variation, voltage and current harmonics are noticeable. In this paper, permanent magnet synchronous generator is operated as a parallel connection of reactive power compensator. Also, the cascaded controller technique is analyzed with the performance of compensator. The whole system is simulated through the MATLAB/SIMULINK using Simpower system library. The simulations give the improvement of inverter phase and load voltage profile, reduce the voltage harmonics in the inverter voltage control and compensate the current-injected active/reactive power operation in grid-connected wind energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S.: State of the art in research on microgrids: a review. IEEE Access 3, 890–925 (2015)

    Google Scholar 

  2. Mwinyiwiwa, B.M.M., Manyahi, M.J., Gregory, N., Kyaruzi, A.L.: Conceptual synthesis of multi-source renewable energy based microgrid. Int. Sch. Sci. Res. Innov. 7, 1687–1692 (2013)

    Google Scholar 

  3. Jamshidi, A., Ghahderijani, M.M., Barakati, S.M.: Power quality improvement in stand-alone microgrid including fixed-speed wind farm. In: 11th International Conference on Environment and Electrical Engineering, pp. 206–211 (2012)

    Google Scholar 

  4. Mahela, O.P., Shaik, A.G.: Topological aspects of power quality improvement techniques: a comprehensive overview. Renew. Sustain. Energy Rev. 58, 1129–1142 (2016)

    Google Scholar 

  5. SenthilKumar, A., Rajasekar, S., Ajay-D-Vimal Raj, P.: Power quality profile enhancement of utility connected microgrid system using ANFIS-UPQC. SMART GRID Tech. Energy Procedia 21, 112–119 (2015)

    Google Scholar 

  6. Singh, M., Khadkikar, V., Chandra, A.: Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system. IET Power Electr. 4, 122–130 (2011)

    Article  Google Scholar 

  7. Jena, N.K., Pradhan, H., Mohanty, K.B., Sanyal, S.K.: A comparison between PI & SMC used for decoupled control of PMSG in a variable speed wind energy system. In: International Conference on Energy Power and Environment: Towards Sustainable Growth (ICEPE), pp. 1–6 (2015)

    Google Scholar 

  8. Ansa Fathima, A., Babu, C.M.B.: Power quality improvement of a grid connected with hybrid energy system using fuzzy logic controller. Adv. Res. J. Sci. Eng. Tech. 3, 341–345 (2016)

    Google Scholar 

  9. Nguyen, T.H., Lee, D.C., Song, S.H., Kim, E.H.: Improvement of power quality for PMSG wind turbine systems. In: Energy Conversion Congress and Exposition (ECCE), pp. 2763–2770, IEEE (2010)

    Google Scholar 

  10. Tripathi, S.M., Tiwari, A.N., Singh, D.: Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: a technology review. Renew. Sustain. Energy Rev. 51, 1288–1305 (2015)

    Article  Google Scholar 

  11. Zhong, Q.-C., Hornik, T.: Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load. IEEE Trans. Ind. Elec. 60, 1344–1355 (2013)

    Google Scholar 

  12. Bouzid, A.M., Cheriti, A., Sicard, P.: H-infinity loop shaping controller design of micro-source inverters to improve the power quality. In: IEEE 23rd International Symposium (ISIE), pp. 2371–2378 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Praiselin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Praiselin, W.J., Belwin Edward, J. (2018). Power Quality Improvement of Microgrid with Cascaded Controller-Based PMSG Used in Wind Turbines. In: SenGupta, S., Zobaa, A., Sherpa, K., Bhoi, A. (eds) Advances in Smart Grid and Renewable Energy. Lecture Notes in Electrical Engineering, vol 435. Springer, Singapore. https://doi.org/10.1007/978-981-10-4286-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4286-7_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4285-0

  • Online ISBN: 978-981-10-4286-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics