A Novel Six-Switch Power Converter for Single-Phase Wind Energy System Applications

  • K. Kumar
  • K. R. Prabhu
  • N. Ramesh Babu
  • P. Sanjeevikumar
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 435)


In this paper, a six-switch AC/DC/AC converter is proposed for single-phase wind energy system application. The proposed converter consists of two arms with three switches in each, where the top layer switches are used for the rectification mode and lower layer switches are used for the inversion mode of operation. The middle layer switches are shared by the both rectification and inversion mode operation based on the modified PWM scheme. A small rated DC link capacitor is chosen by providing suitable coordination control and EX-OR gate logic between the rectification and inversion mode of operation. The proposed single-phase six-switch converter has the advantage of both reduced number of switches and small DC link capacitor size. To validate the effectiveness of the proposed converter, simulation results are presented for 1 kW wind system.


AC/DC/AC converter Wind energy system Modified PWM Reduced switch count topology 


  1. 1.
    Liu, X., Loh, P.C., Wang, P., Blaabjerg, F.: A direct power conversion topology for grid integration of hybrid AC/DC energy resources. IEEE Trans. Ind. Electron. 60(12), 5696–5707 (2013)Google Scholar
  2. 2.
    Tiwari, R., Saravanan, S., Ramesh Babu, N., Kumar, G., Siwach, V.: Design and development of a high step-up DC-DC converter for non-conventional energy applications. In: Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, 1–4 (2016)Google Scholar
  3. 3.
    Sanjeevikumar, P., Geethalakshmi, B., Dananjayan, P.: Performance analysis of AC-DC-AC converter as a matrix converter. In: Conference Proceedings IEEE India International. Conference on Power Engineering, IEEE-IICPE’06, Chennai, (India). 57–61 (2006)Google Scholar
  4. 4.
    Ramji, T., Ramesh Babu, N.: Recent developments of control strategies for wind energy conversion system. Renew. Sustain. Energy Rev. 66 268–285 (2016)Google Scholar
  5. 5.
    Saravanan, S., Ramesh Babu, N.: RBFN based MPPT algorithm for PV system with high step up converter. Energy Convers. Manag. 122, 239–251 (2016)Google Scholar
  6. 6.
    Ramji, T., Ramesh Babu, N.: Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine 49(1), 462–467 (2016)Google Scholar
  7. 7.
    Cumulative development of various renewable energy system/devices in country. Retrieved from
  8. 8.
    Jung, H.S., Chee, S.J., Sul, S.K., Park, Y.J., Park, H.S., Kim, W.K.: Control of three-phase inverter for AC motor drive with small DC-link capacitor fed by single-phase AC source. IEEE Trans. Ind. Appl. 50(2), 1074–1081 (2014)CrossRefGoogle Scholar
  9. 9.
    Dos Santos, E.C., Rocha, N., Jacobina, C.B.: Suitable single-phase to three-phase AC–DC–AC power conversion system. IEEE Trans. Power Electron. 30(2), 860–870 (2015)Google Scholar
  10. 10.
    Jacobina, C.B., Oliveira, A.C.: Single-phase AC–AC double-star chopper cells (DSCC) converter without common DC-link capacitor. IEEE Trans. Ind. Appl. 51(6), 4642–4652 (2015)Google Scholar
  11. 11.
    Choi, J.H., Kwon, J.M., Jung, J.H., Kwon, B.H.: High-performance online UPS using three-leg-type converter. IEEE Trans. Ind. Electron. 52(3), 889–897 (2005)CrossRefGoogle Scholar
  12. 12.
    Park, J.K., Kwon, J.M., Kim, E.H., Kwon, B.H.: High-performance transformerless online UPS. IEEE Trans. Ind. Electron. 55(8), 2943–2953 (2008)CrossRefGoogle Scholar
  13. 13.
    Kolhatkar, Y.Y., Das, S.P.: Experimental investigation of a single-phase UPQC with minimum VA loading. IEEE Trans. Power Del. 22(1), 373–380 (2007)Google Scholar
  14. 14.
    Portillo, R.C., Prats, M.M., Leon, J.I., Sanchez, J.A., Carrasco, J.M., Galvan, E., Franquelo, L.G.: Modeling strategy for back-to-back three-level converters applied to high-power wind turbines. IEEE Trans. Ind. Electron. 53(5), 1483–1491 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, B.R., Huang, C.H..: Single-phase AC/DC/AC converter based on capacitor clamped topology. IEEE Proc. Electr. Power Appl. 152(3), 464–472 (2005)Google Scholar
  16. 16.
    Jacobina, C.B., Oliveira, T.M., da Silva, E.R.C.: Control of the single-phase three-leg AC/AC converter. IEEE Trans. on Ind. Electron. 53(2), 467–476 (2006)Google Scholar
  17. 17.
    De Freitas, I.S., Jacobina, C.B., da Silva, E.R.C., Oliveira, T.M.: Single-phase AC–DC–AC three-level three-leg converter. IEEE Trans. Ind. Electron. 57(12), 4075–4084 (2010)CrossRefGoogle Scholar
  18. 18.
    Jacobina C.B., Rocha, N., Marinus, N.S., Santos E.C.: Ac-ac single-phase dc-link converter with four controlled switches. In: Twenty-Seventh Annual IEEE Applied Power Electron Conference and Exposition (APEC). 1927–1932 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. Kumar
    • 1
  • K. R. Prabhu
    • 1
  • N. Ramesh Babu
    • 1
  • P. Sanjeevikumar
    • 2
  1. 1.School of Electrical EngineeringVellore Institute Technology (VIT) UniversityVelloreIndia
  2. 2.Department of Electrical and Electronics EngineeringUniversity of JohannesburgAuckland, JohannesburgSouth Africa

Personalised recommendations