Advertisement

A New Switching Pattern Scheme-Based Compact Integrated 15-Level Smart Inverter for Micro-grid System Using Fuzzy Logic Controller

  • Kshatriya Vamshi Krishna Varma
  • Kalahasti Sirisha
  • A. Ram Kumar
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 435)

Abstract

The great demand for renewable energy utilization is increased owing to province of natural fuels, ultimatum energy, and several atmospheric issues. Planning of the futuristic energy generation strategies is utilized by superior energy management technologies. The superior technology is acquired by co-generation scheme with the use of primary energy sources. The intended primary energy sources are accommodated to micro-grid system by using recognized power conditioner with effective intelligent controller. The intelligent controller envisions the switching patterns of proposed 15-level smart inverter topology for regulation of sudden variations, intensifying the outcome responses and ameliorating stability index and low harmonic content. In this approach procure the sinusoidal grid voltage which is in-phase to grid current, then amalgamate to micro-grid system. A MATLAB/Simulink model is developed to validate the proposed scheme via intelligent controller with several modulation patterns with conferred results and several comparisons.

Keywords

Asymmetrical multilevel inverter Fuzzy controller Fuel stacks PI controller PV arrays Total harmonic distortions (THDs) 

References

  1. 1.
    Ashwini, K., Kapil, K., Naresh, K., Satyawati, S., Saroj, M.M.: Renewable energy in India: current status and future potentials. Renew. Sustain. Energy Rev. 14, 2434–2442 (2010)CrossRefGoogle Scholar
  2. 2.
    Jain, S., Agarwal, V.: An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources. IEEE Trans. Energy Convers. 23(2), 622–631 (2008)CrossRefGoogle Scholar
  3. 3.
    Bragard, M., Soltau, N., Thomas, S., Doncker, R.W.D.: The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems. IEEE Trans. Power Electron. 25(12), 3049–3056 (2010)CrossRefGoogle Scholar
  4. 4.
    Liserre, M., Sauter, T., Hung, J.Y.: Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. 4(1), 18–37 (2010)CrossRefGoogle Scholar
  5. 5.
    Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)CrossRefGoogle Scholar
  6. 6.
    Zheng, F., Lai, J-S., Rodriguez, J.: Multilevel inverters: a survey of topologies, controls, and applications. Ind. Electron., IEEE Trans. 49(4), 724–738 (2002)CrossRefGoogle Scholar
  7. 7.
    Rodriguez, J., Franquelo, L.G., Kouro, S., Leon, J.I., Portillo, R.C., Prats, M.A.M., Perez, M.A.: Multilevel converters: an enabling technology for high-power applications. Proc. IEEE 97(11), 1786–1817 (2009)CrossRefGoogle Scholar
  8. 8.
    Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197–2206 (2010)CrossRefGoogle Scholar
  9. 9.
    Choi, S., Saeedifard, M.: Capacitor voltage balancing of flying capacitor multilevel converters by space vector PWM. IEEE Trans. Power Deliv. 27(3), 1154–1161 (2012)CrossRefGoogle Scholar
  10. 10.
    Busquets Monge, S.: Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array. IEEE trans. Ind. Electron. 55(7), 2713–2723 (2008)CrossRefGoogle Scholar
  11. 11.
    Hinago, Y., Koizumi, H.: A single phase multilevel inverter using switched series/parallel DC voltage sources. IEEE Trans. Ind. Electron. 57(8), 2643–2650 (2010)CrossRefGoogle Scholar
  12. 12.
    Mei, J., Xiao, B., Shen, K., Jian, L.M., Zheng, Yong: Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator. IEEE Trans. Power Electron. 28(11), 5063–5073 (2013)CrossRefGoogle Scholar
  13. 13.
    McGrath, B.P., Holmes, D.G.: Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49(4), 858–867 (2002)CrossRefGoogle Scholar
  14. 14.
    Bahr, S.M.E., Rama Rao, K.S.: A new multi carrier based PWM for multilevel converter. In: 2011 IEEE Applied Power Electronics Colloquium (IAPEC). 63–68, IEEE (2011)Google Scholar
  15. 15.
    Mao, X., Ayyanar, R., Krishnamurthy, H.K.: Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis. IEEE Trans. Power Electron. 24(4), 991–1001 (2009)CrossRefGoogle Scholar
  16. 16.
    Cecati, C., Ciancetta, F., Siano, P.: A multilevel inverter for photovoltaic systems with fuzzy logic control. IEEE Trans. Ind. Electron. 57(12), 4115–4125 (2010)CrossRefGoogle Scholar
  17. 17.
    Premkumar, E., Rajkumar, S.: Balanced PV cascaded multilevel grid-connected inverters under level-shifted PWMs with fuzzy controller. In: 2014 International Conference on Information Communication and Embedded Systems (ICICES). 1–4 Feb 2014Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kshatriya Vamshi Krishna Varma
    • 1
  • Kalahasti Sirisha
    • 2
  • A. Ram Kumar
    • 3
  1. 1.Department of Electrical & Electronics EngineeringGPRECKurnoolIndia
  2. 2.Department of Mechanical EngineeringMahatma Gandhi Institute of TechnologyHyderabadIndia
  3. 3.Department of Electrical & Electronics EngineeringKalasalingam UniversityKrishnakoilIndia

Personalised recommendations