Single-Stage Boost Inverter Topologies for Nanogrid Applications

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 435)

Abstract

The non-conventional energy source-based distribution generation systems are suitable for low-power applications. These renewable energy system (RES)-based networks very often experience vast changes in the inverter output voltage, due to certain power quality issues like fluctuations, voltage sags, etc. Usually, a conventional boost converter is connected between the DC source and inverter to boost up the DC voltage when the available voltage is less than the required voltage for a particular application. If a highly boosted voltage is needed, the duty ratio of the converter needs to be fixed at maximum which creates serious reverse recovery issues. In order to overcome the aforementioned problems, single-stage power inverters are the best solution. Impedance-source inverter (ZSI), switched boost inverter (SBI), quasi-switched boost inverter (QSBI) are some of the single-stage step-up inverter topologies. These converters can either buck or boost the available DC input voltage, which provides better electromagnetic interference immunity and need not to be operated at extreme duty cycle, and it can produce both direct and alternating voltages from a single DC source. Because of all the above-mentioned advantages, single-stage boost inverters are appropriate for nanogrid applications. This paper reviews the features and operations of single-stage boost inverter topologies like ZSI, QZSI, basic SBI and family of QSBI topologies. The MATLAB simulation studies are carried out with the same design parameters for all the topologies, and the results are presented in detail including performance comparison.

Keywords

Nanogrid VSI ZSI QZSI SBI Quasi-SBI Shoot through 

References

  1. 1.
    Kroposki, B., Pink, C., Deblasio, R., Thomas, H., Simoes, M., Sen, P.K.: Benefits of power electronic interfaces for distributed energy systems. IEEE Trans. Energy Convers. 25, 901–908 (2010)CrossRefGoogle Scholar
  2. 2.
    Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics. Kluwer, Norwell, MA, USA (2001)CrossRefGoogle Scholar
  3. 3.
    Lazzarin, T.B., Baue, G.A.T.R., Barbi, I.: A control strategy for parallel operation of single-phase voltage source inverters: analysis, design and experimental results. IEEE Trans. Ind. Electron. 60, 2194–2204 (2013)CrossRefGoogle Scholar
  4. 4.
    Sriramalakshmi, P., Sreedevi, V.T.: Modified PWM control methods of Z source inverter for drive applications. ARPN J. Eng. Appl. Sci. 10, 6932–6943 (2015)Google Scholar
  5. 5.
    Shen, M., Joseph, A., Wang, J., Peng, F.Z., Adams, D.J.: Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans. PE 22, 1453–1463 (2007)Google Scholar
  6. 6.
    Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 39, 504–510 (2003)CrossRefGoogle Scholar
  7. 7.
    Peng, F.Z.: Z-source Networks for Power Conversion. In: APEC 2008, pp. 1258–1265 (2008)Google Scholar
  8. 8.
    Ellabban, O., Mierlo, J.V., Lataire, P.: A DSP-based dual-loop peak DC-link voltage control strategy of the Z-source inverter. IEEE Trans. Power Electron. 27, 4088–4097 (2012)CrossRefGoogle Scholar
  9. 9.
    Hanif, M., Basu, M., Gaughan, K.: Understanding the operation of a Z-source inverter for photovoltaic application with a design example. IET Power Electron 4, 278–287 (2011)CrossRefGoogle Scholar
  10. 10.
    Liu, J.B., Hu, J.G., Xu, L.Y.: Dynamic modeling and analysis of Z-source converter-derivation of AC small signal model and design-oriented analysis. IEEE Trans. Power Electron. 22, 1786–1796 (2007)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Jiang, S., Cintron Rivera, G., Peng, F.Z.: Modelling and control of quasi z source inverter for distributed generation applications. IEEE Trans. Ind. Electron. 60 (2013)Google Scholar
  12. 12.
    Liu, H., Liu, P., Zhang, Y.: Design and digital implementation of voltage and current mode control for the quasi-Z-source converters. IET Power Electron. 6, 990–998 (2013)CrossRefGoogle Scholar
  13. 13.
    Upadhyay, S., Ravindranath, A., Mishra, S., Joshi, A.: A Switched-Boost Topology for Renewable Power Application, pp. 758–762. IEEE IPEC 10 (2010)Google Scholar
  14. 14.
    Mishra, S., Adda, R., Joshi, A.: Inverse Watkins-Johnson topology based inverter. IEEE Trans. Power Electron. 27, 1066–1070 (2012)CrossRefGoogle Scholar
  15. 15.
    Adda, R., Ray, O., Mishra, S., Joshi, A.: Synchronous-reference-frame based control of switched boost inverter for standalone dc nanogrid applications. IEEE Trans. Power Electron. 28, 1219–1233 (2013)CrossRefGoogle Scholar
  16. 16.
    Ravindranath, A., Mishra, S., Joshi, A.: Analysis and PWM control of switched boost inverter. IEEE Trans. Ind. Electron. 60, 5593–5602 (2013)CrossRefGoogle Scholar
  17. 17.
    Rajakaruna, U., Jayawickrama, L.: Steady-state analysis and designing impedance network of Z-source inverters. IEEE Trans. Ind. Electron. 57, 2483–2491 (2010)CrossRefGoogle Scholar
  18. 18.
    Nag, S.S., Mishra, S.: Current-fed switched inverter. IEEE Trans. Ind. Electron. 61, 4680–4690 (2014)CrossRefGoogle Scholar
  19. 19.
    Nguyen, M.-K., Le, T.-V., Park, S.-J., Lim, Y.-C.: A class of quasi-switched boost inverter. IEEE Trans. Ind. Electron. 62, 1526–1536 (2015)CrossRefGoogle Scholar
  20. 20.
    Loh, P.C., Vilathgamuwa, D., Lai, M.X., Chua, Li, Y.W.: Pulse-width modulation of Z-source inverters. IEEE Trans. Power Electron. 20, 1346–1355 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringVIT UniversityChennaiIndia

Personalised recommendations