Skip to main content

Parameter Design Method of Planetary Hybrid Power-Split System

  • Chapter
  • First Online:
Analysis and Design of the Power-Split Device for Hybrid Systems
  • 574 Accesses

Abstract

Based on the front introduction of the related theory and simulation technology in the hybrid power system, this chapter proposes a multi-factor integrated parametric design method for a power-split hybrid electric bus (HEB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toyota. Worldwide sales of Toyota hybrids top 10 million units. 2017. http://www.toyota-global.com/innovation/environmental_technology/hv10million/.

  2. Hutchinson T, Burgess S, Herrmann G. Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis. Appl Energy. 2014;119:314–29.

    Article  Google Scholar 

  3. Duoba M, Ng H, Larsen R. In-situ mapping and analysis of the Toyota Prius HEV engine. SAE Technical Paper. 2000.

    Google Scholar 

  4. An F, Rousseau A. Integration of a modal energy and emissions model into a PNGV vehicle simulation model, PSAT. SAE Technical Paper. 2001.

    Google Scholar 

  5. Rousseau A, Kwon J, Sharer P, Pagerit S, Duoba M. Integrating data, performing quality assurance, and validating the vehicle model for the 2004 Prius using PSAT. 2006.

    Google Scholar 

  6. Chen C. Power flow and efficiency analysis of epicyclic gear transmission with split power. Mech Mach Theory. 2013;59:96–106.

    Article  Google Scholar 

  7. Chen C, Angeles J. Virtual-power flow and mechanical gear-mesh power losses of epicyclic gear trains. J Mech Des. 2007;129:107–13.

    Article  Google Scholar 

  8. Chen C, Liang TT. Theoretic study of efficiency of two-dofs of epicyclic gear transmission via virtual power. J Mech Des. 2011;133:031007.

    Article  Google Scholar 

  9. Gupta A, Ramanarayanan C. Analysis of circulating power within hybrid electric vehicle transmissions. Mech Mach Theory. 2013;64:131–43.

    Article  Google Scholar 

  10. Meisel J. An analytic foundation for the Toyota Prius THS-II powertrain with a comparison to a strong parallel hybrid-electric powertrain. SAE 2006 World Congress & Exhibition. 2006.

    Google Scholar 

  11. Meisel J. An analytic foundation for the two-mode hybrid-electric powertrain with a comparison to the single-mode Toyota Prius THS-II powertrain. SAE World Congress & Exhibition. 2009.

    Google Scholar 

  12. Meisel J. Kinematic study of the GM front-wheel drive two-mode transmission and the Toyota Hybrid System THS-II transmission. SAE Int J Engine 2011;4:1020–34.

    Google Scholar 

  13. Kang J, Choi W, Kim H. Development of a control strategy based on the transmission efficiency with mechanical loss for a dual mode power split-type hybrid electric vehicle. Int J Automot Tech. 2012;13:825–33.

    Article  Google Scholar 

  14. Kim J, Kim N, Hwang S, Hori Y, Kim H. Motor control of input-split hybrid electric vehicles. Int J Automot Tech. 2009;10:733–42.

    Article  Google Scholar 

  15. Abdelsalam AA, Cui S. A fuzzy logic global power management strategy for hybrid electric vehicles based on a permanent magnet electric variable transmission. Energies. 2012;5:1175–98.

    Article  Google Scholar 

  16. Johannesson L, Pettersson S, Egardt B. Predictive energy management of a 4QT series-parallel hybrid electric bus. Control Eng Pract. 2009;17:1440–53.

    Article  Google Scholar 

  17. Kim J, Kang J, Kim Y, Kim T, Min B, Kim H. Design of power split transmission: design of dual mode power split transmission. Int J Automot Tech. 2010;11:565–71.

    Article  Google Scholar 

  18. Wang W, Song R, Guo M, Liu S. Analysis on compound-split configuration of power-split hybrid electric vehicle. Mech Mach Theory. 2014;78:272–88.

    Article  Google Scholar 

  19. Li C.-T, Zhang X, Peng H. Design of power-split hybrid vehicles with a single planetary gear. 2012.

    Google Scholar 

  20. Yu Y, Gao Y, Peng H, Wang Q. Parametric design of power-split HEV drive train. In: Vehicle Power and Propulsion Conference; 2009. VPPC’09. IEEE. IEEE; 2009. p. 1058–63.

    Google Scholar 

  21. Feng Z, Yingke W, Xuhui W, Li Z. Optimal design of planetary gear in multi-mode hybrid drive system. In: Transportation Electrification Asia-Pacific (ITEC Asia-Pacific); 2014 IEEE Conference and Expo. IEEE; 2014. p. 1–5.

    Google Scholar 

  22. Ahn K, Papalambros PY. Design optimization of motor/generator full-load characteristics in two-mode hybrid vehicles. SAE Technical Paper. 2009.

    Google Scholar 

  23. Li Y, Kar N. Advanced design approach of power split device of plug-in hybrid electric vehicles using dynamic programming. In: Vehicle Power and Propulsion Conference (VPPC); 2011 IEEE. IEEE; 2011. p. 1–6.

    Google Scholar 

  24. Liu J, Peng H. A systematic design approach for two planetary gear split hybrid vehicles. Veh Syst Dyn. 2010;48:1395–412.

    Article  Google Scholar 

  25. Zhang X, Peng H, Sun J. A Near-Optimal Power Management Strategy for Rapid Component Sizing of Multimode Power Split Hybrid Vehicles. IEEE Trans Control Syst Tech. 2015;23:609–17.

    Article  Google Scholar 

  26. Cole DE. Elementary vehicle dynamics. Department of Mechanical Engineering, The University of Michigan; 1972.

    Google Scholar 

  27. Liu HY, Zhang ZQ, Zhang MQ. Mechanisms and machine theory[M] (Chinese edition). Beijing: China Machine Press; 2007.

    Google Scholar 

  28. Liu J. Modeling, configuration and control optimization of power-split hybrid vehicles[D]. The University of Michigan; 2007.

    Google Scholar 

  29. Mansour C, Clodic D. Dynamic modeling of the electro-mechanical configuration of the Toyota Hybrid System series/parallel power train[J]. Int J Automot Technol. 2012;13(1):143–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Beijing Institute of Technology Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zeng, X., Wang, J. (2018). Parameter Design Method of Planetary Hybrid Power-Split System. In: Analysis and Design of the Power-Split Device for Hybrid Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-4272-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4272-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4270-6

  • Online ISBN: 978-981-10-4272-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics