Skip to main content

Impact Assessment of Bio-inoculants on Growth of Litchi [Litchi chinensis (Gaertn.) Sonn.] Plants

  • Chapter
  • First Online:
Lychee Disease Management

Abstract

Mycorrhizal fungi are known to establish a strong mutualistic and symbiotic relationship with the roots of litchi plants to the extent of mycorrhizal dependency. Arbuscular mycorrhizal fungi (AMF) have the potential to provide better sustenance to the plants even in adverse conditions by enhancing the mobility of ions/nutrients from the depletion zone of the soil; moreover, dual inoculation with Azospirillum brasilense exerts a synergistic effect on plant growth. The present investigation has been carried out with an aim to develop a bio-inoculant package to obtain better growth of four varieties of litchi plants, Desi, China, Shahi, and Purbi, commonly grown in this region. The effect of bio-inoculants with vermicompost was evaluated on the growth of litchi plants. In a comparative evaluation of the results, the marcots treated with indigenous AMF and A. brasilense with equal doses of vermicompost showed best growth in all the varieties except Shahi. To correlate the treatment impact on growth and mycorrhizal colonization, the rootlets of all the litchi varieties were screened. Percentage of root colonization ranged between 28 and 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreeva IN, Red’ Kina TV, Izmailov SF (1993) The involvement of IAA in stimulation of Rhizobium legume symbiosis by Azospirillum brasilense. Russ J Plant Physiol 406:780–784

    Google Scholar 

  • Boddey RM, Chalk M, Victoria R, Matsui E (1983) The 15N isotope dilution technique applied to the estimation of biological nitrogen fixation associated with Paspalum notatum in the field. Soil Biol Biochem 15:25–32

    Article  CAS  Google Scholar 

  • Charest C, Brown A (1993) The effect of vesicular arbuscular mycorrhizae and chilling on two hybrids on Zea mays L. Mycorrhiza 4:89–92

    Article  Google Scholar 

  • Cheryl P, Glick B (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  Google Scholar 

  • Coville FV (1912) The lychee Litchi chinensis, a mycorrhizal plant. In: Groff GM (ed) Appendix to the lychee and lungan. Canton Christian College and Grange Jud Company, New York

    Google Scholar 

  • Diem HG, Dommergues YP (1980) Significance and improvement of rhizospheric nitrogen fixation. In: Subba Rao NS (ed) Recent advances in biological nitrogen fixation. Arnold, London, pp 190–226

    Google Scholar 

  • Edwards CA (1995) Historical overview of vermicomposting. Biocycle 366:56–58

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London/New York, p 426

    Google Scholar 

  • Edwards CA, Burrows I (1988) The potential of earthworms composts as plant growth media. In: Enwards CA, Neuhauser E (eds) Earthworms in waste and environmental management. SPB Academic Press, The Hague, pp 21–32

    Google Scholar 

  • Germida JJ, Xavier LJC (2001) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. In: Third international conference on Mycorrhiza, Adelaide, Australia, 8–13 July 2001, pp 1–179

    Google Scholar 

  • Graham JH, Eissenstat DM (1998) Field evidence for the carbon cost of citrus mycorrhizas. New Phytol 140:103–110

    Article  Google Scholar 

  • Hamel C, Dalpe Y, Furlan V, Parent S (1977) Indigenous populations of arbuscular mycorrhiza fungi and soil aggregate stability are major determinants of leek Allium porrum L. response to inoculation with Glomus intraradices Schenck & Smith or Glomus versiforme Karsten Berch. Mycorrhiza 7:187–196

    Article  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life history of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Article  Google Scholar 

  • Kadman A, Slor E (1974) Experiments with propagation of the litchi Litchi chinensis in Israel. Ind J Horticult 31:28–33

    Google Scholar 

  • Kranabetter JM, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189–196

    Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilajo strain and with vesicular arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 20:387–389

    Google Scholar 

  • Marloth RH (1947) The litchi in South Africa. I. Varieties and propagation. II. Cultural practices and marketing. Farming South Africa 22(824–30):863–870

    Google Scholar 

  • Miller RM, Jastrow JD (1992) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen MF (ed) Mycorrhiza functioning. Chapman & Hall, London, pp 438–467

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulanik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Nery M, Abrantes SGTV, Dos D, Dobereiner J (1977) Fixacaoda nitrogenio em Trigo. Rev Bras Clene Solo 1:15–20

    CAS  Google Scholar 

  • Nicole CD, Rola AM, Michael K (2003) Vermicompost stimulates mycorrhizal colonization of roots of Sorghum bicolor at the expense of plant growth. Pedobiologia 47:85–89

    Article  Google Scholar 

  • O’Hara GW, Davey MR, Luca JA (1981) Effect of inoculation of Zea mays with Azospirillum brasilense strains under temperate condition. Can J Microbiol 27:871–877

    Article  PubMed  Google Scholar 

  • Okon Y (1982) Azospirillum: physiology properties, mode and association with roots and its application for the benefit of cereal and forage grass crops. Isr J Bot 31:214–220

    Google Scholar 

  • Pacovsky RS, Pawar EA, Bethlenfalvay GJ (1985) Nutrition of Sorghum plants fertilized with nitrogen or inoculation with A. brasilense. Plant Soil 85:145–148

    Article  CAS  Google Scholar 

  • Parthasarthi K, Ranganathan LS (1999) Longevity of microbial and enzyme activities and their influence on NPK content in pressmud vermicasts. Euro J Soil Biol 35:107–113

    Article  Google Scholar 

  • Parthasarthi K, Ranganathan LS (2000) Aging effect on enzyme activities in pressmud vermicasts of Lampito mauritii Kinberg and Eudrilus eugeniae Kinberg. Biol Fertil Soil 30:347–350

    Article  Google Scholar 

  • Patriquin DG, Dobereiner J (1978) Light microscopy observations of tetrazolium reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24:734–742

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K (1993) Growth depression in mycorrhizal citrus and high phosphorus supply: analysis of carbon costs. Plant Physiol 101:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clear staining parasitic and vasicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:58–161

    Article  Google Scholar 

  • Prabhakaran J, Arjunan G, Ravi KB, Ramamoorthi N (1995) Mycorrhizae: biofertilizer for the future. In: Adholeya A, Singh S (eds) Proceedings of third national conference on Mycorrhiza. Tata Energy Research Institute, pp 348–357

    Google Scholar 

  • Rai SN, Gaur AC (1982) Nitrogen fixation by Azospirillum spp. and effect of Azospirillum lipoferum on yield and N-uptake of wheat crop. Plant Soil 69:233–283

    Article  CAS  Google Scholar 

  • Rangaswamy R (1995) A text book of agricultural statistic. Wiley, New Delhi

    Google Scholar 

  • Sano T, Fujii T, Iyama S, Hirota Y, Kamagata K (1981) Nitrogen fixation in the rhizosphere of cultivated and wild rice strains. Crop Sci 21:758–761

    Article  CAS  Google Scholar 

  • Son CL, Smith SE (1988) Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol 108:305–314

    Article  Google Scholar 

  • Subba Rao NS, Tilak KVBR, Singh CS, Kumari KM (1979) Response of the few gramineous plants to inoculation with Azospirillum brasilense. Curr Sci 48:133–134

    Google Scholar 

  • Subba Rao NS, Tilak KBVR, Singh CS (1985) Effect of combined inoculation of Azospirillum brasilense and vesicular arbuscular mycorrhiza on pearl millet Pennisetum americanum. Plant Soil 822:285–286

    Google Scholar 

  • Subramaian KS, Charest C (1997) Nutritional, growth, and reproductive responses of maize Zea mays to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25–32

    Article  Google Scholar 

  • Tien TM, Gaskin MH, Hubbell DH (1979) Plant growth substances produced by A. brasilense and their effect on growth of pearl millet. Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilak KVBR (1995) Vesicular arbuscular mycorrhiza and Azospirillum brasilense rhizocoenosis in pearl millet Pennisetum americanum L. Lecke in semi-arid tropics. In: Adholeya A, Singh S (eds) Mycorrhizae: biofertilizer for the future. Proceedings of third national conference on Mycorrhiza. Tata Energy Research Institute, pp 177–179

    Google Scholar 

  • Tomati U, Galli E (1995) Earthworms: soil fertility and plant productivity. Acta Zool Fenn 196:11–14

    Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different mycorrhizal fungal species are potencies determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Wani SP (1990) Inoculation with associative nitrogen-fixing bacteria. Role in cereal grain production improvement. Ind J Microbiol 30:363–393

    Google Scholar 

  • Wani SP, Lee KK (1991) Role of biofertilizers in upland crop production. In: Tandon HLS (ed) Fertilizers, organic manures, recyclable wastes and biofertilizers. Fertilizer Development and Consultation Organization, New Delhi, pp 91–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anfal Arshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sagar, P., Arshi, A., Roy, A.K. (2017). Impact Assessment of Bio-inoculants on Growth of Litchi [Litchi chinensis (Gaertn.) Sonn.] Plants. In: Kumar, M., Kumar, V., Bhalla-Sarin, N., Varma, A. (eds) Lychee Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-4247-8_5

Download citation

Publish with us

Policies and ethics