Skip to main content

Optimizing Baseball and Softball Bats

  • Chapter
  • First Online:
Optimization and Dynamics with Their Applications
  • 535 Accesses

Abstract

Collisions between baseballs, softballs and bats are complex and therefore their models are complex. One purpose of this paper is to show how complex these collisions can be, while still being modeled using only Newton’s principles and the conservation laws of physics. This paper presents models for the speed and spin of balls and bats. These models and equations for bat-ball collisions are intended for use by high school and college physics students, engineering students and most importantly students of the science of baseball. Unlike in previous papers, these models use only simple Newtonian principles to explain simple collision configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.

References

  • Bahill, A. T. (2004). The ideal moment of inertia for a baseball or softball bat. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 34(2), 197–204.

    Article  Google Scholar 

  • Bahill, A. T., Baldwin, D. G., & Ramberg, J. S. (2009). Effects of altitude and atmospheric conditions on the flight of a baseball. International Journal of Sports Science and Engineering, 3(2), 109–128. http://www.worldacademicunion.com/journal/SSCI/online.htm. ISSN 1750-9823 (print).

  • Bahill, A. T., & Karnavas, W. J. (1989). Determining ideal baseball bat weights using muscle force-velocity relationships. Biological Cybernetics, 62, 89–97.

    Article  Google Scholar 

  • Bahill, A. T., & Karnavas, W. J. (1991). The ideal baseball bat. New Scientist, 130(1763), 26–31.

    Google Scholar 

  • Bahill, A. T., & LaRitz, T. (1984). Why can’t batters keep their eyes on the ball. American Scientist, 72, 249–253.

    Google Scholar 

  • Bahill, A. T., & Morna Freitas, M. (1995). Two methods for recommending bat weights. Annals of Biomedical Engineering, 23(4), 436–444.

    Article  Google Scholar 

  • Baldwin, D. (2007). Snake Jazz, Xlibris Corp. www.Xlibris.com.

  • Baldwin, D. G., & Bahill, A. T. (2004). A model of the bat’s vertical sweetness gradient. In M. Hubbard, R. D. Mehta, & J. M. Pallis (Eds.), The engineering of sport 5. Proceedings of the 5th International Engineering of Sport Conference, September 13–16, 2004, Davis, CA, International Sports Engineering Association (ISEA), Sheffield, England (Vol. 2, pp. 305–311).

    Google Scholar 

  • Brach, R. M. (2007). Mechanical impact dynamics: Rigid body collisions. Wiley.

    Google Scholar 

  • Choi, K. K., & Kim, M. H. (2005). Structural sensitivity analysis and optimization 1, linear systems. New York, NY: Springer Science + Bussiness Media Inc.

    Google Scholar 

  • Crisco, J. J., Greenwald, R. M., Blume, J. D., & Penna, L. H. (2002). Batting performance of wood and metal baseball bats. Medicine & Science in Sports & Exercise, 1675–1684. doi:10.1249/01.MSS.0000031320.62025.57.

  • Cross, R. (2011). Physics of baseball and softball. Springer.

    Google Scholar 

  • Cross, R., & Nathan, A. M. (2006). Scattering of a baseball by a bat. American Journal of Physics, 74(1), 896–904.

    Article  Google Scholar 

  • Dadouriam, H. M. (1913). Analytic mechanics for students of physics and engineering (p. 248). New York: D. Van Nostrand Co.

    Google Scholar 

  • Ferreira da Silva, M. F. (2007). Meaning and usefulness of the coefficient of restitution. European Journal of Physics, 28, 1219–1232. doi:10.1088/0143-0807/28/6/019.

    Article  Google Scholar 

  • Fleisig, G. S., Zheng, N., Stodden, D. F., & Andrews, J. R. (2002). Relationship between bat mass properties and bat velocity. Sports Engineering, 5, 1–8. doi:10.1046/j.1460-2687.2002.00096.x.

    Article  Google Scholar 

  • Kensrud, J. R., Nathan, A. M., & Smith, L. V. (2016). Oblique collisions of baseballs and softballs with a bat. American Journal of Physics.

    Google Scholar 

  • King, K., Hough, J., & McGinnis, R. (2012). A new technology for resolving the dynamics of a swinging bat. Sports Engineering, 15, 41–52.

    Article  Google Scholar 

  • Koenig, K., Mitchell, N. D., Hannigan, T. E., & Cluter, J. K. (2004). The influence of moment of inertia on baseball/softball bat swing speed. Sports Engineering, 7, 105–117.

    Article  Google Scholar 

  • Nathan, A. M., Crisco, J. J., Greenwald, R. M., Russell, D. A., & Smith, L. V. (2011a). A Comparative study of baseball bat performance. Sports Engineering, 13, 153–162.

    Article  Google Scholar 

  • Nathan, A. M., Smith, L. V., Faber, W. L., & Russell, D. A. (2011b). Corked bats, juiced balls, and humidors: The physics of cheating in baseball. American Journal of Physics, 79(6), 575–580.

    Article  Google Scholar 

  • Nathan, A. M., Cantakos, J., Kesman, R., Mathew, B., & Lukash, W. (2012). Spin of a batted baseball, 9th Conference of the International Sports Engineering Association (ISEA). Procedia Engineering, 34, 182–187. doi:10.1016/j.proeng.2012.04.032.

    Article  Google Scholar 

  • Sawicki, G. S., Hubbard, M., & Stronge, W. J. (2003). How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories. American Journal of Physics, 71(11), 1152–1162.

    Article  Google Scholar 

  • Smith, E. D., Szidarovszky, F., Karnavas, W. J., & Bahill, A. T. (2008). Sensitivity analysis, a powerful system validation technique. Open Cybernetics & Systemics Journal, 2, 39–56.

    Article  Google Scholar 

  • Smith, L., & Kensrud, J. (2014). Field and laboratory measurements of softball player swing speed and bat performance. Sports Engineering, 17, 75–82. doi:10.1007/s12283-013-0126-y.

    Article  Google Scholar 

  • Watts, R. G., & Bahill, A. T. (1990). Keep your eye on the ball: Curveballs, knuckleballs, and fallacies of baseball (1st ed.). New York: W. H. Freeman and Co.

    Google Scholar 

  • Watts, R. G., & Bahill, A. T. (2000). Keep your eye on the ball: Curveballs, knuckleballs, and fallacies of baseball (2nd ed.). New York: W. H. Freeman and Co.

    Google Scholar 

  • Welch, C. M., Banks, S. A., Cook, F. F., & Draovitch, P. (1995). Hitting a baseball: A biomechanical description. Journal of Orthopaedic and Sports Physical Therapy, 22, 193–201.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Lynden Mahrt for comments on the manuscript. I acknowledge brilliant mathematical derivations from the Great Szidarovszky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Terry Bahill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bahill, A.T. (2017). Optimizing Baseball and Softball Bats. In: Matsumoto, A. (eds) Optimization and Dynamics with Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4214-0_10

Download citation

Publish with us

Policies and ethics