Special Summability Methods

  • P. N. Natarajan


In the current chapter, we introduce some special methods of summability, viz. the Abel method, the Weighted Mean method, the Euler method and the \((M, \lambda _n)\) or Natarajan method, and study their properties extensively. The connection between the Abel method and the Natarajan method is brought out.


The Weighted Mean method Hardy Móricz and Rhoades The \((M, \lambda _n)\) or Natarajan method Y-method Consistent Translative Inclusion theorem Equivalence theorem The Abel method Product theorem The Euler method Invertible 


  1. 1.
    Peyerimhoff, A.: Lectures on Summability. Lecture Notes in Mathematics, vol. 107. Springer, Berlin (1969)MATHGoogle Scholar
  2. 2.
    Natarajan, P.N.: A generalization of a theorem of Móricz and Rhoades on Weighted means. Comment. Math. Prace Mat. 52, 29–37 (2012)MATHGoogle Scholar
  3. 3.
    Hardy, G.H.: A theorem concerning summable series. Proc. Cambridge Philos. Soc. 20, 304–307 (1920-21)Google Scholar
  4. 4.
    Móricz, F., Rhoades, B.E.: An equivalent reformulation of summability by weighted mean methods. revisited. Linear Algebra Appl. 349, 187–192 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Natarajan, P.N.: Another theorem on weighted means. Comment. Math. Prace Mat. 50, 175–181 (2010)MathSciNetMATHGoogle Scholar
  6. 6.
    Maddox, I.J.: Elements of Functional Analysis. Cambridge University Press, Cambridge (1977)MATHGoogle Scholar
  7. 7.
    Natarajan, P.N.: On the \((M, \lambda _n)\) method of summability. Analysis (München) 33, 51–56 (2013)CrossRefMATHGoogle Scholar
  8. 8.
    Natarajan, P.N.: A product theorem for the Euler and the Natarajan methods of summability. Analysis (München) 33, 189–195 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Natarajan, P.N.: New properties of the Natarajan method of summability. Comment. Math. Prace Mat. 55, 9–15 (2015)MathSciNetMATHGoogle Scholar
  10. 10.
    Hardy, G.H.: Divergent Series. Oxford (1949)Google Scholar
  11. 11.
    Powell, R.E., Shah, S.M.: Summability Theory and Applications. Prentice-Hall of India (1988)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Formerly of the Department of MathematicsRamakrishna Mission Vivekananda CollegeChennaiIndia

Personalised recommendations