Skip to main content

5-(Halomethyl)furfurals from Biomass and Biomass-Derived Sugars

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

5-(Halomethyl)furfurals (XMFs) are biomass-derived platform chemicals that are gaining traction as practical alternatives to 5-(hydroxymethyl)furfural (HMF). This chapter provides an overview of the historical role of XMFs in the chemical investigation of carbohydrates and describes multiple approaches to their preparation, including recent breakthroughs by which XMFs, and in particular 5-(chloromethyl)furfural (CMF), are obtained in high yield directly from raw biomass. Halomethylfurfurals have two basic derivative manifolds: furanic and levulinic, and this chapter will highlight commercial markets that can be unlocked by synthetic manipulation of CMF and its immediate derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farmer TJ, Mascal M. Platform molecules. In: Clark J, Deswarte F, editors. Introduction to chemicals from biomass. 2nd ed. Chichester: Wiley; 2015. doi:10.1002/9781118714478.ch4.

    Google Scholar 

  2. Mascal M. 5-(Chloromethyl)furfural is the new HMF: functionally equivalent but more practical in terms of its production from biomass. ChemSusChem. 2015;8:3391–5.

    Article  CAS  PubMed  Google Scholar 

  3. Fenton HJH, Gostling M. Bromomethylfurfuraldehye. J Chem Soc Trans. 1899;75:423–33.

    Article  CAS  Google Scholar 

  4. Fenton HJH, Gostling M. The action of hydrogen bromide on car bohydrates. J Chem Soc Trans. 1901;79:361–5.

    Article  CAS  Google Scholar 

  5. Fenton HJH, Gostling M. Derivatives of methylfurfural. J Chem Soc Trans. 1901;79:807–16.

    Article  CAS  Google Scholar 

  6. Fenton HJH, Robinson F. Homologues of furfuraldehyle. J Chem Soc Trans. 1909;95:1334–40.

    Article  CAS  Google Scholar 

  7. Erdmann E. ω-Hydroxy-sym-methylfurfuraldehyde and its relation ship to cellulose. Berichte. 1910;43:2391–8.

    CAS  Google Scholar 

  8. van Ekstein WA, Blanksma JJ. ω-Hydroxymethylfurfuraldehyde as the cause of certain color reactions of the hexoses. Berichte. 1910;43:2355–61.

    Google Scholar 

  9. Cooper WF, Nuttall WH. Some Reactions of ω-bromomethylfurfur aldehyde. J Chem Soc Trans. 1911;99:1193–200.

    Article  CAS  Google Scholar 

  10. Cooper WF, Nuttall WH. Furan-2:5-dialdehyde. J Chem Soc Trans. 1912;101:1074–81.

    Article  CAS  Google Scholar 

  11. Fischer E, von Neyman H. ω-Chloromethyl- and ethoxymethyl-fur fural. Berichte. 1914;47:973–7.

    CAS  Google Scholar 

  12. Hibbert H, Hill HS. Studies on cellulose chemistry II. The action of dry hydrogen bromide on carbohydrates and polysaccharides. J Am Chem Soc. 1923;45:176–82.

    Article  CAS  Google Scholar 

  13. Rinkes IJ. 5-Methylfurfural. Org Synth. 1934;14:62–3.

    Article  Google Scholar 

  14. Haworth WN, Jones WGM. The conversion of sucrose into furan compounds. Part 1. 5-Hydroxymethylfurfuraldehyde and some derivatives. J Chem Soc, 1944;667–70.

    Google Scholar 

  15. Hamada K, Suzukamo G, Nagase T. Furaldehydes. Ger Offen DE. 1978;2745743.

    Google Scholar 

  16. Hamada K, Suzukamo G. 5-Chloromethylfurfural. Jpn. Kokai Tok kyo Koho JP. 1978;53105472.

    Google Scholar 

  17. Hamada K, Yoshihara H, Suzukamo G 5-Halomethylfurfural. Eur Pat Appl EP. 1983;79206.

    Google Scholar 

  18. Hamada K, Yoshihara H, Suzukamo G. An improved method for the conversion of saccharides into furfural derivatives. Chem Lett. 1982;5:617–8.

    Article  Google Scholar 

  19. Hamada K, Yoshihara H, Suzukamo G. Surface active agent-cata lyzed conversion of saccharides to furfural derivatives. J Oleo Sci. 2001;50:207–9.

    Article  CAS  Google Scholar 

  20. Hamada K, Yoshihara H, Suzukamo G. Novel synthetic route to 2,5-disubstituted furan derivatives through surface active agent-catalyzed dehy dration of D-(-)-fructose. J Oleo Sci. 2001;50:533–6.

    Article  CAS  Google Scholar 

  21. Szmant HH, Chundury DD. The preparation of 5-Chloromethyl furfuraldehyde from High Fructose Corn Syrup and other carbohydrates. J Chem Tech Biotechnol. 1981;31:205–12.

    Article  CAS  Google Scholar 

  22. Sanda K, Rigal L, Gaset A. Synthèse du 5-Bromométhyl- et du 5-Chlorométhyl-2-furannecarboxaldéhyde. Carbohydrate Res. 1989;187:15–23.

    Article  CAS  Google Scholar 

  23. Sanda K, Rigal L, Gaset A. Optimisation of the Synthesis of 5-Chloro methyl-2-furancarboxaldehyde from D-Fructose Dehydration and in-situ Chlorination of 5-Hydroxymethyl-2-furancarboxaldehyde. J Chem Tech Bi otechnol. 1992;55:139–45.

    Article  CAS  Google Scholar 

  24. Mascal M, Nikitin EB. Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed. 2008;47:7924–6.

    Article  CAS  Google Scholar 

  25. Mascal M, Nikitin EB. Towards the efficient, total glycan utilization of biomass. ChemSusChem. 2009;2:423–6.

    Article  CAS  PubMed  Google Scholar 

  26. Mascal M. High-yield conversion of cellulosic biomass into furanic biofuels and value-added products. US. 2010;7:829,732.

    Google Scholar 

  27. Mascal M, Nikitin EB. Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem. 2009;2:859–61.

    Article  CAS  PubMed  Google Scholar 

  28. Mascal M, Nikitin EB. Co-processing of carbohydrates and lipids in oil crops to produce a hybrid biodiesel. Energy Fuels. 2010;24:2170–1.

    Article  CAS  Google Scholar 

  29. Kumari N, Olesen JK, Pedersen CM, Bols M. Eur J Org Chem. 2011;1266–70.

    Google Scholar 

  30. Bredihhin A, Mäeorg U, Vares L. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydrate Res. 2013;375:63–7.

    Article  CAS  Google Scholar 

  31. Brasholz M, von Känel K, Hornung CH, Saubern S, Tsanaktsidis J. Green Chem. 2011;13:1114–7.

    Article  CAS  Google Scholar 

  32. Breeden SW, Clark JH, Farmer TJ, Macquarrie DJ, Meimoun JS, Nonne Y, Reid JESJ. Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem. 2013;15:72–5.

    Article  CAS  Google Scholar 

  33. Budarin VL, Shuttleworth PS, De bruyn M, Farmer TJ, Gronnow MJ, Pfaltzgraff L, Macquarrie DJ, Clark JH. The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catalysis Today. 2015;239:80–9.

    Article  CAS  Google Scholar 

  34. Gao W, Li Y, Xiang Z, Chen K, Yang R, Argyropoulos DS. Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules. 2013;18:7675–85.

    Article  CAS  PubMed  Google Scholar 

  35. Mascal M. Comment on Gao, W., et al. “Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic sys tems.”. Molecules. 2014;18:7675–85.

    Google Scholar 

  36. Miao Z, Li Z, Jiang Y, Tang X, Zeng X, Sun Y, Lin L. Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Adv. 2016;6:27004–7.

    Article  Google Scholar 

  37. Fayet C, Gelas J. A new method for the preparation of 5-hydroxyme thyl-2-furaldehyde by the reaction of ammonium or immonium salts with mono-, oligo- and polysaccharides. Direct access to 5-halomethyl-2-fural dehydes. Carbohydrate Res. 1983;122:59–68.

    Article  Google Scholar 

  38. Lane DR, Mascal M, Stroeve P. Experimental studies towards opti mization of the production of 5-(chloromethyl)furfural (CMF) from glucose in a two-phase reactor. Renewable Energy. 2016;85:994–1001.

    Article  CAS  Google Scholar 

  39. Masuno, MN, Bissell J, Smith RL, Higgins B, Wood AB, Foster M. Utilizing a multiphase reactor for the conversion of biomass to produce sub stituted furans in the presence of gaseous acid, proton donor, and solvent. 2012;WO 2012170520.

    Google Scholar 

  40. Cho J-K, Kim S-Y, Lee D-H, Kim BR, Jung J-W. Method for prepar ing 5-chloromethyl-2-furfural using galactan derived from seaweed in two-component phase. 2012;WO 2012111988.

    Google Scholar 

  41. Browning SM, Bissell J, Smith RL, Masuno MN, Nicholson BF, Wood AB. Methods for producing 5-(halomethyl)furfural from feedstock com prising six-carbon sugars. 2014;WO 2014066746.

    Google Scholar 

  42. Mikochik P, Cahana A, Nikitin E,; Standiford J, Ellis K, Zhang L, George T. Efficient, high-yield conversion of saccharides in a pure or crude form to 5-(chloromethyl)-2-furaldehyde. 2014;US 20140187802.

    Google Scholar 

  43. Wood AB, Masuno MN; Smith RL, Bissell J; Hirsch-Weil DA.; Araiza RJ, Henton DR, Plonka JH. Methods for producing 5-(halomethyl) furfu ral from renewable biomass resources. 2015;WO 2015042407.

    Google Scholar 

  44. Chernyak MY, Tarabanko VE, Sokolenko VA, Sharypov VI, Morozov AA, Suchkova EO. Interaction of 5-bromomethylfurfural with silver flu oride in methanol and toluene. J Siberian Federal University, Chemistry. 2011;4(2):191–8.

    CAS  Google Scholar 

  45. Chernyak MY, Tarabanko VE, Sokolenko WA, Morozov AA. Syn thesis of 5-fluoromethylfurfural from 5-bromomethylfurfural in presence of dibenzo-24-crown-8. Khimiya Rastitel’nogo Syr’ya. 2012;3:223–4.

    Google Scholar 

  46. Yang W, Sen A. Direct catalytic synthesis of 5-methylfurfural from biomass-derived carbohydrates. ChemSusChem. 2011;4:349–52.

    Article  CAS  PubMed  Google Scholar 

  47. Yang W, Grochowski MR, Sen A. Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem. 2012;5(7):1218–22.

    Article  CAS  PubMed  Google Scholar 

  48. Hamada K, Suzukamo G, Fujisawa K. 5-Methylfurfural. Eur Pat Appl EP. 1982;44186

    Google Scholar 

  49. Lund T, Lund H. Electrochemical reduction of furan derivatives de rived from biomass. Acta Chem Scand. 1985;B39:429–35.

    Article  CAS  Google Scholar 

  50. Kang E-S, Hong Y-W, Chae DW, Kim B, Kim B, Kim YJ, Cho JK, Kim YG. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural. ChemSusChem. 2015;8:1179–88.

    Article  CAS  PubMed  Google Scholar 

  51. Sun J, Bao M, Feng X, Yu X, YamamotoY AAI, Arumugam N, Kumar RS. Carboxylative coupling reaction of five-membered (chloromethyl) heteroarenes with allyltributylstannane catalyzed by palla dium nanoparticles. Tetrahedron Lett. 2015;56:6747–50.

    Article  CAS  Google Scholar 

  52. Shi Y, Brenner P, Bertsch S, Radacki K, Dewhurst RD. η3-Furfuryl and η3-thienyl complexes of palladium and platinum of relevance to the functionalization of biomass-derived furans. Organometallics. 2012;31:5599–605.

    Article  CAS  Google Scholar 

  53. Zhou X, Rauchfuss TB. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive sol vent. ChemSusChem. 2013;6:383–8.

    Article  CAS  PubMed  Google Scholar 

  54. Laugel C, Estrine B, Le Bras J, Hoffmann N, Marinkovic S, Muzart J. NaBr/DMSO-Induced synthesis of 2,5-diformylfuran from fructose or 5-(hydroxymethyl)furfural. ChemCatChem. 2014;6:1195–8.

    CAS  Google Scholar 

  55. Dutta S, Wu L, Mascal M. Production of 5-(chloromethyl)furan-2-carbonyl chloride and furan-2,5-dicarbonyl chloride from biomass-derived 5-(chloromethyl)furfural (CMF). Green Chem. 2015;17:3737–9.

    Article  CAS  Google Scholar 

  56. Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends. Energy. 2013;54:333–42.

    Article  CAS  Google Scholar 

  57. (a) Brandvold TA. Carbohydrate route to para-xylene and terepthalic acid. 2010;US 0331568 A1.; (b) Masuno MN, Bissell J, Smith R, Higgins B, Wood AB, Foster M. Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans. 2012;WO 170521; (c) Shiramizu M, Toste FD. On the diels–alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene. Chem Eur J. 2011;17:12452–7.; (d) Williams CL, Chang C-C, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Lobo RF, Fan W, Dauenhauer PJ. Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal. 2012;2:935–9.

    Google Scholar 

  58. Dutta S, Mascal M. Novel Pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural. ChemSusChem. 2014;7:3028–30.

    Article  CAS  PubMed  Google Scholar 

  59. Mikochik P, Cahana A. Conversion of 5-(chloromethyl)-2- furaldehyde into 5-methyl-2-furoic acid and derivatives thereof. PCT Int Appl. 2012;WO 2012024353

    Google Scholar 

  60. Mascal M, Dutta S. Synthesis of the natural herbicide d-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem. 2011;13:40–41.

    Google Scholar 

  61. Wood AB, Masuno MN, Smith RL, Bissell JA, Araiza RJ, Hirsch-Weil DA. Methods for production of aryldiamine compounds, aryldinitro compounds and other compounds. PCT Int Appl. 2016;2016033348

    Google Scholar 

  62. Mascal M, Nikitin EB. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem. 2010;12:370–3.

    Article  CAS  Google Scholar 

  63. Kiermayer J. A derivative of furfuraldehyde from laevulose. Chemiker-Zeitung. 1895;19:1003–5.

    CAS  Google Scholar 

  64. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. The biofine process – production of levulinic acid, furfural, and formic acid from lignocellulosic feedstock. In: Kamm B, Gruber PR, Kamm M, editors. Biorefineries – industrial processes and products, vol 1. Weinheim: Wiley-VCH Verlag GmbH & Co. 2006. p. 139–164

    Google Scholar 

  65. Top value added chemicals from biomass. Volume I: results of screening for potential candidates from sugars and synthesis gas. Technical report identifier PNNL-14804, Pacific Northwest National Laboratory and the Na tional Renewable Energy Laboratory, 2004. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf.

  66. Mascal M, Dutta S. Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem. 2011;13:3101–2.

    Article  CAS  Google Scholar 

  67. Chang F, Hsu W-H, Mascal M. Synthesis of anti-inflammatory furan fatty acids from biomass-derived 5-(chloromethyl)furfural. Sustainable Chem Pharm. 2015;1:14–8.

    Article  CAS  Google Scholar 

  68. Chundury D, Szmant HH. Preparation of polymeric buildlng blocks from 5-hydroxymethyl- and 5-chloromethylfurfuraldehyde. Ind Eng Chem Prod Res Dev. 1981;20:158–63.

    Article  CAS  Google Scholar 

  69. Elix JA. Synthesis and properties of annulene polyoxides. Aus J Chem. 1969;22:1951–62.

    Article  CAS  Google Scholar 

  70. Jira R, Bräunling H. Synthesis of polyarenemethines - a new class of conducting polymers. Synthetic Metals. 1987;17:691–6.

    Article  CAS  Google Scholar 

  71. Timko JM, Cram DJ. Furanyl unit in host compounds. J Am Chem Soc. 1974;96:7159–60.

    Article  CAS  Google Scholar 

  72. Timko JM, Moore SS, Walba DM, Hiberty PC, Cram DJ. Host-guest complexation. 2. Structural units that control association constants between polyethers and tert-butylammonium salts. J Am Chem Soc. 1977;99:4207–19.

    Article  CAS  Google Scholar 

  73. Smith PB. Bio-based sources for terephthalic acid. ACS Symposium Series 1192 (Green Polymer Chemistry: Biobased Materials and Biocataly sis). 2015. p. 453–69.

    Google Scholar 

  74. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macro molecules. 2014;47:1383–91.

    Article  CAS  Google Scholar 

  75. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-J M, JFJ C, AJD S. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polymer Chem. 2015;6:5961–83.

    Article  CAS  Google Scholar 

  76. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD. Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem. 2016;1:32–58.

    Article  CAS  Google Scholar 

  77. Corma A, de la Torre O, Renz M. High-quality diesel from hexose- and pentose-derived biomass platform molecules. ChemSusChem. 2011;4:1574–7.

    Article  CAS  PubMed  Google Scholar 

  78. Seck KA. Biorefinery for conversion of carbohydrates and lignocel lulosics via primary hydrolysate CMF to liquid fuels. PCT Int Appl WO. 2013;2013122686

    Google Scholar 

  79. Stepan E, Velea S, Oancea F, Bombos M, Vasilievici G, Parvulescu V, Blajan O, Crucean A. Process for obtaining aviation biofuel from microalgal biomass, by processing its components in an integrated system. PCT Int Appl. 2015;WO 2015076687.

    Google Scholar 

  80. Silks LA, Gordon JC, Wu R, Hanson SK. Process for preparation of furan derivatives by carbon chain extension through aldol reaction. PCT Int. Appl. WO. 2011;2011022041

    Google Scholar 

  81. Klein LL, Shanklin MS. Total synthesis of dimethyl jaconate. J Org Chem. 1988;53:5202–9.

    Article  CAS  Google Scholar 

  82. Florentino HQ, Hernandez-Benitez RI, Avina JA, Burgueno-Tapia E, Tamariz J. Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis. 2011;1106–12.

    Google Scholar 

  83. Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M. Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chlorome thyl)furfural. J Agric Food Chem. 2014;62:476–80.

    Article  CAS  PubMed  Google Scholar 

  84. Mascal M, Dutta S. Synthesis of the natural herbicide δ-ami nolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem. 2011;13:40–1.

    Article  CAS  Google Scholar 

  85. The biorefinery concept: an integrated approach. In: Clark J, Deswarte F, editors. Introduction to chemicals from biomass, 2nd ed. Chichester: Wiley; 2015.

    Google Scholar 

  86. Hisham MWM, Bommaraju TV. Kirk-Othmer Encyclopedia of Chemical Technology. 2005;13:808–37.

    CAS  Google Scholar 

  87. Tomaszewska M, Gryta M, Morawski AW. Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Sep Purif Tech nol. 2001;22-23:591–600.

    Article  Google Scholar 

  88. Schuchardt U, Joekes I, Duarte HC. Hydrolysis of sugar cane bagasse with hydrochloric acid: separation of the acid by pervaporation. Evaluation of the Bergius process. J Chem Technol Biotechnol. 1988;41:51–60.

    Article  CAS  Google Scholar 

  89. Baniel A, Eyal A. A process for the recovery of HCl from a dilute solution thereof and extractant composition for use therein. WO. 2009;2009125400

    Google Scholar 

  90. Sarangi K, Padhan E, Sarma PVRB, Park KH, Das RP. Removal/re covery of hydrochloric acid using alamine 336, aliquat 336, TBP and cyanex 923. Hydrometallurgy. 2006;84:125–9.

    Article  CAS  Google Scholar 

  91. Gaddy JL, Clausen EC. Recovery of concentrated hydrochloric acid from a product comprising sugars and hydrochloric acid from acid hydroly sis of biomass. US. 1987:4645658.

    Google Scholar 

  92. Crittenden ED, Hixson AN. Extraction of hydrogen chloride from aqueous solutions. Ind Eng Chem. 1954;46:265–74.

    Article  CAS  Google Scholar 

  93. Forster AV, Martz LE, Leng DE. Recovering concentrated hydrochlo ric acid from the crude product obtained from acid hydrolysis of cellulose. 1980;EP 18621.

    Google Scholar 

  94. Zhang X, Li C, Wang X, Wang Y, Xu T. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: an inte gration of diffusion dialysis and conventional electrodialysis. J Membr Sci. 2012;409–410:257–63.

    Article  Google Scholar 

  95. Xu J, Lu S, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. J Hazard Mater. 2009;165:832–7.

    Article  CAS  PubMed  Google Scholar 

  96. Rohman FS, Aziz N. Desalination. 2011;275:37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mascal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mascal, M. (2017). 5-(Halomethyl)furfurals from Biomass and Biomass-Derived Sugars. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_4

Download citation

Publish with us

Policies and ethics