Skip to main content

CONTACT FORCE PROBLEM IN THE REHABILITATION ROBOT CONTROL DESIGN

  • Conference paper
  • First Online:
CMBEBIH 2017

Part of the book series: IFMBE Proceedings ((IFMBE,volume 62))

Abstract

Physical interactions between patients and therapists during rehabilitation have served as motivation for the design of rehabilitation robots, yet there is a lack in fundamental understanding of the principles governing such human-human interactions. Review of the literature posed important open questions regarding sensorimotor interaction during human-human interactions that could facilitate the design of human-robot interactions and haptic interfaces for rehabilitation. The goal is to use the leading principles of the human-human interaction in order to define a way in which people could be in contact with robots in a more intuitive and biologically inspired way. The proposed hybrid impedance control solves the robot – environment contact problem and offers a possible solution for the rehabilitation robot interaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jarrassé N, Charalambous T, Burdet E: A framework to describe, analyze and generate interactive motor behaviors. PLoS One 2012, 7:1–13.

    Google Scholar 

  2. Galvez JA, Kerdanyan G, Maneekobkunwong S, Weber R, Scott M, Harkema SJ, Reinkensmeyer DJ: “Measuring Human Trainers” Skill for the Design of Better Robot Control Algorithms for Gait Training after Spinal Cord Injury. In Proceedings of the IEEE Conference on Rehabilitation Robotics. 2005:231–234.

    Google Scholar 

  3. Ikeura R, Morita A, Mizutani K: Variable-Damping Characteristics in Carrying an Object by Two Humans. In Proceedings of the IEEE International Workshop on Robot and Human Communication. 1997:130–134.B.

    Google Scholar 

  4. Rehabilitation, World Health Organization. http://www.who.int/topics/rehabilitation/en/. Accessed 19 Feb 2016.

  5. Díaz I, Gil JJ, Sánchez E. Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 2011; 759764. doi:10.1155/2011/759764.

  6. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002; 83(7):952-9.

    Google Scholar 

  7. Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014; 11:111.

    Google Scholar 

  8. Romer GRBE, Stuyt HJA, Peters A. Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 2005; 1:201-4.

    Google Scholar 

  9. Bemelmans R, Gelderblom GJ, Jonker P, de Witte L. Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J Am Med Dir Assoc. 2012; 13(2):114-20.

    Google Scholar 

  10. Armeo therapy, https://www.hocoma.com/usa/us/products/armeo/. Accessed 19 Feb 2016.

  11. Hocoma product overview, Hocoma, https://www.hocoma.com/usa/us/products/. Accessed 19 Feb 2016.

  12. Reha technology product, http://www.rehatechnology.com/products.html. Accessed 19 Feb 2016.

  13. Motorika product, Motorika, http://www.motorika.com/?categoryId=90219. Accessed 19 Feb 2016.

  14. Tyrosolution, Tyromotion, http://tyromotion.com/en/products. Accessed 19 Feb 2016.

  15. Knaepen K, Beyl P, Duerinck S, Hagman F, Lefeber D, Meeusen R. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(6):1128-37.

    Google Scholar 

  16. Alamdari A, Krovi V. Robotic physical exercise and system, Biomed Eng Lett (2016) 6:1-9 9

    Google Scholar 

  17. (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. Conf Proc ASME Int Des Eng Tech Conf Comput Eng Conf. 2015; 1:1-10.

    Google Scholar 

  18. Li J, Zheng R, Zhang Y, Yao J. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf Proc IEEE Rehabil Robot. 2011; 1:1-6.

    Google Scholar 

  19. Casadio M, Sanguineti V, Morasso PG, Arrichiello V. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care. 2006; 14(3):123-42.

    Google Scholar 

  20. Huang FC, Patton JL, Mussa-Ivaldi FA. Negative viscosity can enhance learning of inertial dynamics. Conf Proc IEEE Rehabil Robot. 2009; 1:474-79.

    Google Scholar 

  21. Proficio, Barrett Medical, http://www.barrettmedical.com/. Accessed 19 Feb 2016.

  22. Jung H, Han J, Kim CY, Chun KJ, Jung D, Kim JS, Lim D. Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed Eng Lett. 2015; 5(2):92-7.

    Google Scholar 

  23. Biswas D, Cranny A, Rahim AF, Gupta N, Maharatna K, Harris NR, Ortmann S. On the data analysis for classification of elementary upper limb movements. Biomed Eng Lett. 2014; 4(4):403-13.

    Google Scholar 

  24. Parra-Dominguez GS, Snoek J, Taati B, Mihailidis A. Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 2015; 5(2):98-108.

    Google Scholar 

  25. Jensen U, Leutheuser H, Hofmann S, Schuepferling B, Suttner G, Seiler K, Kornhuber J, Eskofier BM. A wearable real-time activity tracker. Biomed Eng Lett. 2015; 5(2):147-57.

    Google Scholar 

  26. Lajeunesse V, Vincent C, Routhier F, Careau E, Michaud F. Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 2015; 4:1-13.

    Google Scholar 

  27. Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016; 30(1):73-84.

    Google Scholar 

  28. Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, Spungen AM. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015; 52(2):147-58.

    Google Scholar 

  29. Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015; 21(2):110-21.

    Google Scholar 

  30. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015; 21(2):93-9.

    Google Scholar 

  31. K. Waldron and J. Schmiedeler. Kinematics. In B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, pages 9–33. Springer Berlin Heidelberg, 2008.

    Google Scholar 

  32. B. Siciliano and L. Villani. Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science . Springer US, 1999.

    Google Scholar 

  33. L. Villani and J. de Schutter. Force control. In B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, pages 161–187. Springer, 2008.

    Google Scholar 

  34. N. Hogan. Impedance control: An approach to manipulation: Part i-theory. Journal of Dynamic Systems, Measurement, and Control, 107(1):1–7, 1985.

    Google Scholar 

  35. J.K. Salisbury. Active stiffness control of a manipulator in Cartesian coordinates. In 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, volume 19, pages 95–100, 1980.

    Google Scholar 

  36. M. H. Raibert and J.J. Craig. Hybrid position/force control of manipulators. Journal of Dynamics Systems, Measurement, and Control, 103(2): 126–133, 1981.

    Google Scholar 

  37. J. de Schutter and H. Van Brussel. Compliant robot motion ii. a control approach based on external control loops. The International Journal of Robotics Research, 7(4):18–33, 1988.

    Google Scholar 

  38. S. Chiaverini and L. Sciavicco. The parallel approach to force/position control of robotic manipulators. IEEE Transactions on Robotics and Automation, 9(4):361–373, 1993.

    Google Scholar 

  39. T. Yoshikawa. Force control of robot manipulators. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 220–226 vol.1, 2000.

    Google Scholar 

  40. B. Brogliato. Feedback control. In Nonsmooth Mechanics, Communications and Control Engineering, pages 397–461. Springer London, 1999.

    Google Scholar 

  41. Technology Research News. Cooperative robots share the load, February 2002. http://www.trnmag.com/Stories/2002/021302/Cooperative_robots_share_the_load_021302.html.

  42. Stanford University. The Stanford assistant mobile manipulator (samm). http://robotics.stanford.edu/~ruspini/samm.html.

  43. H. Urbanek, A. Albu-Schaffer, and P. Van Der Smagt. Learning from demonstration: repetitive movements for autonomous service robotics. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , pages 3495–3500 vol.4, 2004.

    Google Scholar 

  44. Robot Rose. Robot rose media footage. http://robot-rose.com/media/.

  45. Y. Karayiannidis and Z. Doulgeri. Robot contact tasks in the presence of control target distortions. Robotics and Autonomous Systems, 58(5): 596–606, 2010.

    Google Scholar 

  46. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L.C. Visser, and S. Wolf. Variable impedance actuators: A review. Robotics and Autonomous Systems, 61(12): 1601–1614, 2013.

    Google Scholar 

  47. F. Caccavale and M. Uchiyama. Cooperative manipulators. In B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, pages 701–718. Springer Berlin Heidelberg, 2008.

    Google Scholar 

  48. M. Uchiyama. Chapter 1 multi-arm robot systems: A survey. In Pasquale Chiacchio and Stefano Chiaverini, editors, Complex Robotic Systems, volume 233 of Lecture Notes in Control and Information Sciences, pages 1–31. Springer Berlin Heidelberg, 1998.

    Google Scholar 

  49. C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D.V. Dimarogonas and D. Kragic. Dual arm manipulation-a survey. Robotics and Autonomous Systems, 60(10): 1340–1353, 2012.

    Google Scholar 

  50. J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In IEEE International Conference on Robotics and Automation (ICRA), pages 2308–2315, 2010.

    Google Scholar 

  51. Yaskawa Motoman Robotics. Motoman sda10 assembling a chair. http://www.motoman.com/industries/furniture-fixtures.php

  52. M. Uchiyama and P. Dauchez. Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Advanced Robotics, 7(4):361–383, 1992.

    Google Scholar 

  53. A. J. Koivo and M.A. Unseren. Reduced order model and decoupled control architecture for two manipulators holding a rigid object. Journal of Dynamic System, Measurement and Control, 113(4):646–654, 1991.

    Google Scholar 

  54. F. Caccavale, P. Chiacchio, A. Marino, and L. Villani. Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 13(5): 576–586, 2008.

    Google Scholar 

  55. F. Caccavale and L. Villani. Impedance control of cooperative manipulators. Machine, Intelligence and Robotic Control, 2:51–57, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlata Jelačić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Jelačić, Z. (2017). CONTACT FORCE PROBLEM IN THE REHABILITATION ROBOT CONTROL DESIGN. In: Badnjevic, A. (eds) CMBEBIH 2017. IFMBE Proceedings, vol 62. Springer, Singapore. https://doi.org/10.1007/978-981-10-4166-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4166-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4165-5

  • Online ISBN: 978-981-10-4166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics