Advertisement

Some Problems in Second Order Evolution Inclusions with Boundary Condition: A Variational Approach

  • Charles CastaingEmail author
  • Truong Le Xuan
  • Paul Raynaud de Fitte
  • Anna Salvadori
Chapter
Part of the Advances in Mathematical Economics book series (MATHECON, volume 21)

Abstract

We prove, under appropriate assumptions, the existence of solutions for a second order evolution inclusion with boundary conditions via a variational approach.

Keywords

Bounded variation Epiconvergence Biting Lemma Subdifferential Young measures 

References

  1. 1.
    Aftabizadeh AR, Aizicovici S, Pavel NH (1992) On a class of second-order anti-periodic boundary value problems. J Math Anal Appl 171:301–320MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aftabizadeh AR, Aizicovici S, Pavel NH (1992) Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces. Nonlinear Anal 18:253–267MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aizicovici S, Pavel NH (1991) Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J Funct Anal 99:387–408MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Attouch H, Cabot A, Redont P (2002) The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Advances in mathematical sciences and applications, vol 12, no 1, Gakkotosho, Tokyo, pp 273–306Google Scholar
  5. 5.
    Balder EJ (1997) Lectures on Young measure theory and its applications in economics. Rend Istit Mat Univ Trieste, vol. 31, suppl.:1–69. Workshop di Teoria della Misura et Analisi Reale Grado, 1997 (Italia)Google Scholar
  6. 6.
    Castaing, C (1980) Topologie de la convergence uniforme sur les parties uniformément intégrables de \(L^{1}_{E}\) et théorèmes de compacité faible dans certains espaces du type Köthe-Orlicz. Travaux Sém. Anal. Convexe, 10(1):exp. no. 5, 27Google Scholar
  7. 7.
    Castaing C, Ibrahim AG, Yarou M (2005) Existence problem of second order evolution inclusions: discretization and variational problems. Taiwan J Math 12(6):1435–1477Google Scholar
  8. 8.
    Castaing C, Le Xuan T (2011) Second order differential inclusion with \(m\)-point boundary condition. J Nonlinear Convex Anal 12(2):199–224MathSciNetzbMATHGoogle Scholar
  9. 9.
    Castaing C, Godet-Thobie Ch, Le Xuan T, Satco B (2014) Optimal control problems governed by a second order ordinary differential equation with \(m\)-point boundary condition. Adv Math Econ 18:1–59MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Castaing C, Raynaud de Fitte P, Valadier M (2004) Young measures on topological spaces. With applications in control theory and probability theory. Kluwer Academic Publishers, DordrechtGoogle Scholar
  11. 11.
    Castaing C, Raynaud de Fitte P, Salvadori A (2006) Some variational convergence results with application to evolution inclusions. Adv Math Econ 8:33–73MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Castaing C, Salvadori A, Thibault L (2001) Functional evolution equations governed by nonconvex sweeping process. J. Nonlinear Convex Anal. 2(2):217–241MathSciNetzbMATHGoogle Scholar
  13. 13.
    Castaing C, Valadier M (1977) Convex analysis and measurable multifunctions. Lectures notes in mathematics, vol 580. Springer, BerlinGoogle Scholar
  14. 14.
    J.P.R Christensen, Topology and borel structure, Math Stud 10. Notas de MathematicaGoogle Scholar
  15. 15.
    Clarke F (1975) Generalized gradients and applications, Trans Am Math Soc 205 Google Scholar
  16. 16.
    Grothendieck A (1964) Espaces Vectoriels Topologiques, 3rd edn. Publ Soc Mat, São PauloGoogle Scholar
  17. 17.
    Haraux A (1989) Anti-periodic solutions of some nonlinear evolution equations. Manuscr Math. 63:479–505MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mabrouk M (2003) A variational principle for a nonlinear differential equation of second order. Adv Appl Math 31(2):388–419MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Maruo K (1986) On certain nonlinear differential equation of second order in time. Osaka J Math 23:1–53MathSciNetzbMATHGoogle Scholar
  20. 20.
    Monteiro Marques MDP (1993) Differential inclusions non nonsmooth mechanical problems, shocks and dry friction. Progress in nonlinear differential equations and their applications, vol 9. Birkhauser, BaselGoogle Scholar
  21. 21.
    Moreau JJ, Valadier M (1987) A chain rule involving vector functions of bounded variations. J Funct Anal 74(2):333–345MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Okochi H (1988) On the existence of periodic solutions to nonlinear abstract parabolic equations. J Math Soc Jpn 40(3):541553MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rockafellar RT (1971) Integrals which are convex functionals, II. Pac J Math 39(2):439–469MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schatzmann M (1979) Problèmes unilatéraux d’évolution du 2ème ordre en temps. Ph.D. thesis, Université Pierre et Marie Curie, Paris, (Thèse de Doctorat ès–Sciences – Mathématiques)Google Scholar
  25. 25.
    Thibault L (1976) Propriétés des sous-différentiels de fonctions localement Lipschitziennes définies sur un espace de Banach séparable. Applications, Thèse, Université MontpellierGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Charles Castaing
    • 1
    Email author
  • Truong Le Xuan
    • 2
  • Paul Raynaud de Fitte
    • 3
  • Anna Salvadori
    • 4
  1. 1.Département de MathématiquesUniversité Montpellier II, Case 051Montpellier Cedex 5France
  2. 2.Department of Mathematics and StatisticsUniversity of Economics of Ho Chi Minh CityHo Chi Minh CityVietnam
  3. 3.Laboratoire Raphaël Salem, UMR CNRS 6085Normandie UniversitéRouenFrance
  4. 4.Dipartimento di MatematicaUniversità‘di PerugiaPerugiaItaly

Personalised recommendations