Skip to main content

Platelet Membrane Glycoproteins

  • Chapter
  • First Online:
Autoimmune Thrombocytopenia

Abstract

Platelets are small anucleate blood cells that are produced in the bone marrow from the cytoplasm of megakaryocytes. Circulating platelets are essential for primary hemostasis and also involved in pathological thrombosis. For the platelet hemostatic functions, platelet surface membrane glycoproteins are crucial to form platelet-subendothelial matrix and platelet-platelet interactions. At the site of blood vessel injury, platelets are captured by platelet GPIb-IX-V interaction with von Willebrand factor which bound to exposed collagen followed by direct platelet-collagen interaction by GPIa-IIa (integrin α2β1) and GPVI. Platelet fibrinogen receptor GPIIb-IIIa (integrin αIIbβ3) is the most abundant glycoprotein on platelet surface, and its affinity for fibrinogen is tightly regulated by inside-out signaling. The platelet-platelet interaction mediated by activated GPIIb-IIIa is necessary for platelet accumulation on the layer of adhered platelets at the injured vessel. Both quantitative and qualitative abnormalities in these platelet glycoproteins can be a cause of platelet dysfunctions and bleeding disorders. In addition, platelet glycoproteins are also important in the pathogenesis of idiopathic thrombocytopenic purpura (ITP). In the majority of patients with ITP, antiplatelet autoantibodies in plasma are directed against platelet glycoproteins especially GPIIb-IIIa and GPIb-IX-V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood. 2008;112:3011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wagner CL, et al. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood. 1996;88:907–14.

    CAS  PubMed  Google Scholar 

  3. Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol. 1974;28:253–60.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest. 1977;60:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamkun JW, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986;46:271–82.

    Article  CAS  PubMed  Google Scholar 

  6. Poncz M, et al. Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem. 1987;262:8476–82.

    CAS  PubMed  Google Scholar 

  7. Kolodziej MA, Vilaire G, Gonder D, Poncz M, Bennett JS. Study of the endoproteolytic cleavage of platelet glycoprotein IIb using oligonucleotide-mediated mutagenesis. J Biol Chem. 1991;266:23499–504.

    CAS  PubMed  Google Scholar 

  8. Fitzgerald LA, Steiner B, Rall Jr SC, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarity to “integrin”. J Biol Chem. 1987;262:3936–9.

    CAS  PubMed  Google Scholar 

  9. Weisel JW, Nagaswami C, Vilaire G, Bennett JS. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem. 1992;267:16637–43.

    CAS  PubMed  Google Scholar 

  10. Xiong JP, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001;294:339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiong JP, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–5.

    Google Scholar 

  12. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 2004;432:59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hughes PE, et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996;271:6571–4.

    Article  CAS  PubMed  Google Scholar 

  14. Kunishima S, et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the alphaIIbbeta3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood. 2011;117:5479–84.

    Article  CAS  PubMed  Google Scholar 

  15. Peyruchaud O, et al. R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin IIb subunit in a patient with a Glanzmann’s thrombasthenia-like syndrome. Blood. 1998;92:4178–87.

    CAS  PubMed  Google Scholar 

  16. Weljie AM, Hwang PM, Vogel HJ. Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb- and beta 3-subunits. Proc Natl Acad Sci U S A. 2002;99:5878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Legate KR, Fassler R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci. 2009;122:187–98.

    Article  CAS  PubMed  Google Scholar 

  18. Zou ZY, Chen H, Schmaier AA, Hynes RO, Kahn ML. Structure-function analysis reveals discrete beta 3 integrin inside-out and outside-in signaling pathways in platelets. Blood. 2007;109:3284–90.

    Article  CAS  PubMed  Google Scholar 

  19. Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 2013;14:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arias-Salgado EG, et al. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci U S A. 2003;100:13298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shattil SJ. Integrins and Src: dynamic duo of adhesion signaling. Trends Cell Biol. 2005;15:399–403.

    Article  CAS  PubMed  Google Scholar 

  22. Ablooglu AJ, Kang J, Petrich BG, Ginsberg MH, Shattil SJ. Antithrombotic effects of targeting alphaIIbbeta3 signaling in platelets. Blood. 2009;113:3585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood. 2014;124:2013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol. 2011;27:321–45.

    Article  CAS  PubMed  Google Scholar 

  25. Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol. 2006;18:579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tadokoro S, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302:103–6.

    Article  CAS  PubMed  Google Scholar 

  27. Calderwood DA, et al. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 1999;274:28071–4.

    Article  CAS  PubMed  Google Scholar 

  28. Wegener KL, et al. Structural basis of integrin activation by talin. Cell. 2007;128:171–82.

    Article  CAS  PubMed  Google Scholar 

  29. Anthis NJ, Campbell ID. The tail of integrin activation. Trends Biochem Sci. 2011;36:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nature reviews. Mol Cell Biol. 2010;11:288–300.

    CAS  Google Scholar 

  31. Critchley DR, Gingras AR. Talin at a glance. J Cell Sci. 2008;121:1345–7.

    Article  CAS  PubMed  Google Scholar 

  32. Petrich BG, et al. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation. J Clin Invest. 2007;117:2250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stefanini L, et al. A talin mutant that impairs talin-integrin binding in platelets decelerates alphaIIbbeta3 activation without pathological bleeding. Blood. 2014;123:2722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nieswandt B, et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med. 2007;204:3113–8.

    Google Scholar 

  35. Petrich BG, et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med. 2007;204:3103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malinin NL, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15:313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14:325–30.

    Article  CAS  PubMed  Google Scholar 

  38. Karakose E, Schiller HB, Fassler R. The kindlins at a glance. J Cell Sci. 2010;123:2353–6.

    Article  PubMed  CAS  Google Scholar 

  39. Rognoni E, Ruppert R, Fassler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129:17–27.

    Article  CAS  PubMed  Google Scholar 

  40. Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science. 2009;324:895–9.

    Article  CAS  PubMed  Google Scholar 

  41. Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem. 2009;284:11485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakazawa T, et al. Agonist stimulation, talin-1, and kindlin-3 are crucial for alpha(IIb)beta(3) activation in a human megakaryoblastic cell line, CMK. Exp Hematol. 2013;41:79–90.e71.

    Article  CAS  PubMed  Google Scholar 

  43. Ye F, et al. The mechanism of kindlin-mediated activation of integrin alphaIIbbeta3. Curr Biol. 2013;23:2288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye F, Petrich BG. Kindlin: helper, co-activator, or booster of talin in integrin activation? Curr Opin Hematol. 2011;18:356–60.

    Article  CAS  PubMed  Google Scholar 

  45. Svensson L, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15:306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer TH, Gatling MN, Lacal JC, White II GC. rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem. 1990;265:19405–8.

    CAS  PubMed  Google Scholar 

  47. Bertoni A, et al. Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton. J Biol Chem. 2002;277:25715–21.

    Article  CAS  PubMed  Google Scholar 

  48. Stefanini L, Bergmeier W. CalDAG-GEFI and platelet activation. Platelets. 2010;21:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kawasaki H, et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc Natl Acad Sci U S A. 1998;95:13278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eto K, et al. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A. 2002;99:12819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crittenden JR, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10:982–6.

    Article  CAS  PubMed  Google Scholar 

  52. Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White II GC. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kato H, et al. Human CalDAG-GEFI deficiency confers severe bleeding tendency and delayed alphaIIbbeta3 activation velocity. Blood. 2016;128:2729–33.

    Google Scholar 

  54. Lozano ML, et al. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood. 2016;128:1282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Canault M, et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med. 2014;211:1349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bellucci S, Caen J. Molecular basis of Glanzmann’s Thrombasthenia and current strategies in treatment. Blood Rev. 2002;16:193–202.

    Article  CAS  PubMed  Google Scholar 

  57. Borhany M, Fatima H, Naz A, Patel H, Shamsi T. Pattern of bleeding and response to therapy in Glanzmann thrombasthenia. Haemophilia. 2012;18:e423–5.

    Article  CAS  PubMed  Google Scholar 

  58. Larrieu MJ, et al. Congenital bleeding disorders with long bleeding time and normal platelet count. II. Von Willebrand’s disease (report of thirty-seven patients). Am J Med. 1968;45:354–72.

    Google Scholar 

  59. Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem. 1985;260:11107–14.

    CAS  PubMed  Google Scholar 

  60. Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis. 2006;1:10.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011;118:5996–6005.

    Article  CAS  PubMed  Google Scholar 

  62. Poon MC, Demers C, Jobin F, Wu JW. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood. 1999;94:3951–3.

    CAS  PubMed  Google Scholar 

  63. Poon MC, et al. The international, prospective Glanzmann Thrombasthenia Registry: treatment and outcomes in surgical intervention. Haematologica. 2015;100:1038–44.

    PubMed  PubMed Central  Google Scholar 

  64. Di Minno G, et al. The international, prospective Glanzmann Thrombasthenia Registry: treatment modalities and outcomes of non-surgical bleeding episodes in patients with Glanzmann thrombasthenia. Haematologica. 2015;100:1031–7.

    PubMed  PubMed Central  Google Scholar 

  65. Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost. 2013;39:642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sullivan SK, et al. High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood. 2014;123:753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang J, et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A. 2011;108:9583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nurden AT, Caen JP. Specific roles for platelet surface glycoproteins in platelet function. Nature. 1975;255:720–2.

    Article  CAS  PubMed  Google Scholar 

  69. Jenkins CS, et al. Platelet membrane glycoproteins implicated in ristocetin-induced aggregation. Studies of the proteins on platelets from patients with Bernard-Soulier syndrome and von Willebrand’s disease. J Clin Invest. 1976;57:112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopez JA, et al. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci U S A. 1987;84:5615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lopez JA, et al. The alpha and beta chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci U S A. 1988;85:2135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hickey MJ, Williams SA, Roth GJ. Human platelet glycoprotein IX: an adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures. Proc Natl Acad Sci U S A. 1989;86:6773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coller BS, Peerschke EI, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood. 1983;61:99–110.

    CAS  PubMed  Google Scholar 

  74. Budde U, Schneppenheim R. Interactions of von Willebrand factor and ADAMTS13 in von Willebrand disease and thrombotic thrombocytopenic purpura. Hamostaseologie. 2014;34:215–25.

    Google Scholar 

  75. Schneider SW, et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007;104:7899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008;112:11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zheng XL. ADAMTS13 and von Willebrand factor in thrombotic thrombocytopenic purpura. Annu Rev Med. 2015;66:211–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost. 2013;11(Suppl 1):330–9.

    Article  PubMed  Google Scholar 

  79. de la Salle C, Lanza F, Cazenave JP. Biochemical and molecular basis of Bernard-Soulier syndrome: a review. Nouv Rev Fr Hematol. 1995;37:215–22.

    CAS  PubMed  Google Scholar 

  80. Berndt MC, Andrews RK. Bernard-Soulier syndrome. Haematologica. 2011;96:355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood. 1998;91:4397–418.

    CAS  PubMed  Google Scholar 

  82. Woods AI, et al. Identification of p.W246L as a novel mutation in the GP1BA gene responsible for platelet-type von Willebrand disease. Semin Thromb Hemost. 2014;40:151–60.

    Article  CAS  PubMed  Google Scholar 

  83. Miller JL, Cunningham D, Lyle VA, Finch CN. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci U S A. 1991;88:4761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ng C, Motto DG, Di Paola J. Diagnostic approach to von Willebrand disease. Blood. 2015;125:2029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res. 2004;114:221–33.

    Article  CAS  PubMed  Google Scholar 

  86. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102:449–61.

    Article  CAS  PubMed  Google Scholar 

  87. Sugiyama T, et al. A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood. 1987;69:1712–20.

    CAS  PubMed  Google Scholar 

  88. Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest. 1989;84:1440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jandrot-Perrus M, et al. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood. 2000;96:1798–807.

    CAS  PubMed  Google Scholar 

  90. Berlanga O, et al. Expression of the collagen receptor glycoprotein VI during megakaryocyte differentiation. Blood. 2000;96:2740–5.

    CAS  PubMed  Google Scholar 

  91. Furihata K, Clemetson KJ, Deguchi H, Kunicki TJ. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Arterioscler Thromb Vasc Biol. 2001;21:1857–63.

    Article  CAS  PubMed  Google Scholar 

  92. Chen H, Locke D, Liu Y, Liu C, Kahn ML. The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. J Biol Chem. 2002;277:3011–9.

    Article  CAS  PubMed  Google Scholar 

  93. Best D, et al. GPVI levels in platelets: relationship to platelet function at high shear. Blood. 2003;102:2811–8.

    Article  CAS  PubMed  Google Scholar 

  94. Tsuji M, Ezumi Y, Arai M, Takayama H. A novel association of Fc receptor gamma-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J Biol Chem. 1997;272:23528–31.

    Article  CAS  PubMed  Google Scholar 

  95. Schulte V, et al. Targeting of the collagen-binding site on glycoprotein VI is not essential for in vivo depletion of the receptor. Blood. 2003;101:3948–52.

    Google Scholar 

  96. Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood. 2004;104:3611–7.

    Article  CAS  PubMed  Google Scholar 

  97. Schmaier AA, et al. Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proc Natl Acad Sci U S A. 2009;106:21167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bergmeier W, Stefanini L. Platelet ITAM signaling. Curr Opin Hematol. 2013;20:445–50.

    Article  CAS  PubMed  Google Scholar 

  99. Arthur JF, Dunkley S, Andrews RK. Platelet glycoprotein VI-related clinical defects. Br J Haematol. 2007;139:363–72.

    Article  CAS  PubMed  Google Scholar 

  100. Dumont B, et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood. 2009;114:1900–3.

    Article  CAS  PubMed  Google Scholar 

  101. Hermans C, et al. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost. 2009;7:1356–63.

    Article  CAS  PubMed  Google Scholar 

  102. Matus V, et al. An adenine insertion in exon 6 of human GP6 generates a truncated protein associated with a bleeding disorder in four Chilean families. J Thromb Haemost. 2013;11:1751–9.

    Article  CAS  PubMed  Google Scholar 

  103. Boylan B, et al. Anti-GPVI-associated ITP: an acquired platelet disorder caused by autoantibody-mediated clearance of the GPVI/FcRgamma-chain complex from the human platelet surface. Blood. 2004;104:1350–5.

    Article  CAS  PubMed  Google Scholar 

  104. Akiyama M, et al. Presence of platelet-associated anti-glycoprotein (GP)VI autoantibodies and restoration of GPVI expression in patients with GPVI deficiency. J Thrombo Haemost. 2009;7:1373–83.

    Article  CAS  Google Scholar 

  105. Gardiner EE, et al. Compromised ITAM-based platelet receptor function in a patient with immune thrombocytopenic purpura. J Thromb Haemost. 2008;6:1175–82.

    Article  CAS  PubMed  Google Scholar 

  106. Kato K, et al. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood. 2003;102:1701–7.

    Article  CAS  PubMed  Google Scholar 

  107. Nieswandt B, et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med. 2001;193:459–69.

    Google Scholar 

  108. Lockyer S, et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res. 2006;118:371–80.

    Article  CAS  PubMed  Google Scholar 

  109. Bender M, Hagedorn I, Nieswandt B. Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl(3) -induced thrombosis. J Thromb Haemost. 2011;9:1423–6.

    Article  CAS  PubMed  Google Scholar 

  110. Konstantinides S, et al. Distinct antithrombotic consequences of platelet glycoprotein Ibalpha and VI deficiency in a mouse model of arterial thrombosis. J Thromb Haemost. 2006;4:2014–21.

    Article  CAS  PubMed  Google Scholar 

  111. Massberg S, et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med. 2003;197:41–9.

    Google Scholar 

  112. Croft SA, et al. Novel platelet membrane glycoprotein VI dimorphism is a risk factor for myocardial infarction. Circulation. 2001;104:1459–63.

    Article  CAS  PubMed  Google Scholar 

  113. Bigalke B, et al. Expression of platelet glycoprotein VI is associated with transient ischemic attack and stroke. Eur J Neurol. 2010;17:111–7.

    Article  CAS  PubMed  Google Scholar 

  114. Al-Tamimi M, et al. Soluble glycoprotein VI is raised in the plasma of patients with acute ischemic stroke. Stroke. 2011;42:498–500.

    Article  CAS  PubMed  Google Scholar 

  115. Samaha FF, et al. Density of platelet collagen receptors glycoprotein VI and alpha2beta1 and prior myocardial infarction in human subjects, a pilot study. Med Sci Monit. 2005;11:CR224–9.

    CAS  PubMed  Google Scholar 

  116. Cabeza N, et al. Surface expression of collagen receptor Fc receptor-gamma/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes. 2004;53:2117–21.

    Article  CAS  PubMed  Google Scholar 

  117. Takagi S, et al. A GPVI polymorphism is a risk factor for myocardial infarction in Japanese. Atherosclerosis. 2002;165:397–8.

    Article  CAS  PubMed  Google Scholar 

  118. Dutting S, Bender M, Nieswandt B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol Sci. 2012;33:583–90.

    Article  PubMed  CAS  Google Scholar 

  119. Induruwa I, Jung SM, Warburton EA. Beyond antiplatelets: the role of glycoprotein VI in ischemic stroke. Int J Stroke. 2016;11:618–25.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kunicki TJ, et al. The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex. J Biol Chem. 1988;263:4516–9.

    CAS  PubMed  Google Scholar 

  121. Nieuwenhuis HK, Akkerman JW, Houdijk WP, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature. 1985;318:470–2.

    Article  CAS  PubMed  Google Scholar 

  122. Argraves WS, et al. Amino acid sequence of the human fibronectin receptor. J Cell Biol. 1987;105:1183–90.

    Article  CAS  PubMed  Google Scholar 

  123. Takada Y, Hemler ME. The primary structure of the VLA-2/collagen receptor alpha 2 subunit (platelet GPIa): homology to other integrins and the presence of a possible collagen-binding domain. J Cell Biol. 1989;109:397–407.

    Article  CAS  PubMed  Google Scholar 

  124. Tuckwell DS, Reid KB, Barnes MJ, Humphries MJ. The A-domain of integrin alpha 2 binds specifically to a range of collagens but is not a general receptor for the collagenous motif. Eur J Biochem. 1996;241:732–9.

    Article  CAS  PubMed  Google Scholar 

  125. Tuckwell D, Calderwood DA, Green LJ, Humphries MJ. Integrin alpha 2 I-domain is a binding site for collagens. J Cell Sci. 1995;108(Pt 4):1629–37.

    CAS  PubMed  Google Scholar 

  126. Jung SM, Moroi M. Platelets interact with soluble and insoluble collagens through characteristically different reactions. J Biol Chem. 1998;273:14827–37.

    Article  CAS  PubMed  Google Scholar 

  127. Jung SM, Moroi M. Activation of the platelet collagen receptor integrin alpha(2)beta(1): its mechanism and participation in the physiological functions of platelets. Trends Cardiovasc Med. 2000;10:285–92.

    Article  CAS  PubMed  Google Scholar 

  128. Jung SM, Moroi M. Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin alpha(2)beta(1). J Biol Chem. 2000;275:8016–26.

    Article  CAS  PubMed  Google Scholar 

  129. Kunicki TJ, Orchekowski R, Annis D, Honda Y. Variability of integrin alpha 2 beta 1 activity on human platelets. Blood. 1993;82:2693–703.

    CAS  PubMed  Google Scholar 

  130. Corral J, Rivera J, Gonzalez-Conejero R, Vicente V. The number of platelet glycoprotein Ia molecules is associated with the genetically linked 807 C/T and HPA-5 polymorphisms. Transfusion. 1999;39:372–8.

    Article  CAS  PubMed  Google Scholar 

  131. Carlsson LE, Santoso S, Spitzer C, Kessler C, Greinacher A. The alpha2 gene coding sequence T807/A873 of the platelet collagen receptor integrin alpha2beta1 might be a genetic risk factor for the development of stroke in younger patients. Blood. 1999;93:3583–6.

    CAS  PubMed  Google Scholar 

  132. Moshfegh K, et al. Association of two silent polymorphisms of platelet glycoprotein Ia/IIa receptor with risk of myocardial infarction: a case-control study. Lancet. 1999;353:351–4.

    Article  CAS  PubMed  Google Scholar 

  133. He L, et al. The contributions of the alpha 2 beta 1 integrin to vascular thrombosis in vivo. Blood. 2003;102:3652–7.

    Google Scholar 

  134. Marjoram RJ, et al. alpha2beta1 integrin, GPVI receptor, and common FcRgamma chain on mouse platelets mediate distinct responses to collagen in models of thrombosis. PLoS One. 2014;9:e114035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kato, H., Tomiyama, Y. (2017). Platelet Membrane Glycoproteins. In: Ishida, Y., Tomiyama, Y. (eds) Autoimmune Thrombocytopenia . Springer, Singapore. https://doi.org/10.1007/978-981-10-4142-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4142-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4141-9

  • Online ISBN: 978-981-10-4142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics