Skip to main content

Megakaryopoiesis and Thrombopoiesis

  • Chapter
  • First Online:
Autoimmune Thrombocytopenia
  • 780 Accesses

Abstract

Platelets are formed from the cytoplasm of megakaryocytes (MKs) that reside in the bone marrow (BM). MKs arise from hematopoietic stem cells in the osteoblastic niche in BM. The primary regulator of megakaryopoiesis is thrombopoietin. It is generally accepted that MKs migrate into the vascular niche and produce platelets; however, the mechanism by which platelets are formed and released from MKs remains controversial. The most prevalent proposed mechanism regarding platelet formation is the proplatelet model; in this model, MKs form long extensions (proplatelets) by remodeling their cytoplasm and release cell fragments into sinusoid vessels. Detached cell fragments in the circulating blood are heterogeneous population of cells in regard to size, shape, or structure. Large fragments (platelet progenitors) are believed to have the ability to convert into mature platelets. After leaving BM sinusoids, these platelet progenitors may convert into individual mature platelets in the bloodstream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    Article  CAS  PubMed  Google Scholar 

  2. Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J, Vainchenker W. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 1996;88(4):1284–96.

    CAS  PubMed  Google Scholar 

  3. Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A. 2002;99(18):11872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112–26.

    Article  CAS  PubMed  Google Scholar 

  5. Nishikii H, Kanazawa Y, Umemoto T, et al. Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells. 2015;33(7):2196–207.

    Article  CAS  PubMed  Google Scholar 

  6. Woolthuis CM, Park CY. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood. 2016;127(10):1242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaushansky K. Determinants of platelet number and regulation of thrombopoiesis. Hematology Am Soc Hematol Educ Program. 2009:147–52.

    Google Scholar 

  8. Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest. 1966;45:645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ng AP, Kauppi M, Metcalf D, Hyland CD, Josefsson EC, Lebois M, Zhang JG, Baldwin TM, Di Rago L, Hilton DJ, Alexander WS. Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc Natl Acad Sci U S A. 2014;111(16):5884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer SC, Keller MD, Woods BA, LaFave LM, Bastian L, Kleppe M, Bhagwat N, Marubayashi S, Levine RL. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis. Blood. 2014;124(14):2280–4.

    Google Scholar 

  11. Shimada Y, Kato T, Ogami K, Horie K, Kokubo A, Kudo Y, Maeda E, Sohma Y, Akahori H, Kawamura K, et al. Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines. Exp Hematol. 1995;23(13):1388–96.

    CAS  PubMed  Google Scholar 

  12. Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med. 2015;21(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  13. Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, Wojcik B, Oellerich T, Corso J, Behrens K, Kumar A, Hussong H, Urlaub H, Koch J, Serve H, Bonig H, Stocking C, Rieger MA, Lausen J. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood. 2015;125(23):3570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16(13):3965–73.

    Google Scholar 

  15. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M, Hirai H. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  16. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  17. Takayama M, Fujita R, Suzuki M, Okuyama R, Aiba S, Motohashi H, Yamamoto M. Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Mol Cell Biol. 2010;30(11):2668–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  19. Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Genes Dev. 1998;12(14):2164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Onodera K, Shavit JA, Motohashi H, Yamamoto M, Engel JD. Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice. EMBO J. 2000;19(6):1335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lecine P, Italiano Jr JE, Kim SW, Villeval JL, Shivdasani RA. Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood. 2000;96(4):1366–73.

    CAS  PubMed  Google Scholar 

  22. Tiwari S, Italiano Jr JE, Barral DC, Mules EH, Novak EK, Swank RT, Seabra MC, Shivdasani RA. A role for Rab27b in NF-E2-dependent pathways of platelet formation. Blood. 2003;102(12):3970–9.

    Article  CAS  PubMed  Google Scholar 

  23. Fujita R, Takayama-Tsujimoto M, Satoh H, Gutiérrez L, Aburatani H, Fujii S, Sarai A, Bresnick EH, Yamamoto M, Motohashi H. NF-E2 p45 is important for establishing normal function of platelets. Mol Cell Biol. 2013;33(14):2659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood. 2008;112(8):3164–74.

    Article  CAS  PubMed  Google Scholar 

  25. Nagata Y, Muro Y, Todokoro K. Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Biol. 1997;139(2):449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raslova H, Roy L, Vourc'h C, Le Couedic JP, Brison O, Metivier D, Feunteun J, Kroemer G, Debili N, Vainchenker W. Megakaryocyte polyploidization is associated with a functional gene amplification. Blood. 2003;101(2):541–4.

    Article  CAS  PubMed  Google Scholar 

  27. Prendes MJ, Bielek E, Zechmeister-Machhart M, Vanyek-Zavadil E, Carroll VA, Breuss J, Binder BR, Geiger M. Synthesis and ultrastructural localization of protein C inhibitor in human platelets and megakaryocytes. Blood. 1999;94(4):1300–12.

    CAS  PubMed  Google Scholar 

  28. Yamada E. The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel). 1957;29:267–90.

    Article  CAS  Google Scholar 

  29. Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte: a misnomer? Blood. 1982;60:213–9.

    CAS  PubMed  Google Scholar 

  30. Schulze H, Korpal M, Hurov J, et al. Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood. 2006;107:3868–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartman TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafii S. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  32. Wright JH. Die Entstehung der Blutplättchen. Virchows Arch. 1906;186:55–63.

    Article  Google Scholar 

  33. Behnke O. An electron microscope study of the rat megakaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res. 1969;26:111–29.

    Google Scholar 

  34. Kosaki G. In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol. 2005;81:208–19.

    Article  CAS  PubMed  Google Scholar 

  35. Caine YG, Vlodavsky I, Hersh M, Polliack A, Gurfel D, Or R, Levine RF, Eldor A. Adhesion, spreading and fragmentation of human megakaryocytes exposed to subendothelial extracellular matrix: a scanning electron microscopy study. Scan Electron Microsc. 1986;(Pt 3):1087–94.

    Google Scholar 

  36. Behnke O. Microtubules in disk-shaped blood cells. Int Rev Exp Pathol. 1970;9:1–92.

    CAS  PubMed  Google Scholar 

  37. White JG, Rao GH. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol. 1998;152:597–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Becker RP, De Bruyn PP. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 1976;145:183–205.

    Article  CAS  PubMed  Google Scholar 

  39. Muto M. A scanning and transmission electron microscopic study on rat bone marrow sinuses and transmural migration of blood cells. Arch Histol Jpn. 1976;39:51–66.

    Article  CAS  PubMed  Google Scholar 

  40. Radley JM, Scurfield G. The mechanism of platelet release. Blood. 1980;56:996–9.

    CAS  PubMed  Google Scholar 

  41. Scurfield G, Radley JM. Aspects of platelet formation and release. Am J Hematol. 1981;10(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  42. Italiano Jr JE, Lecine P, Shivdasani RA, et al. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147:1299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson JL, Shivdasani RA, Boers C, et al. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood. 2005;106:4066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel SR, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106:4076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Breton-Gorius J, Reyes F. Ultrastructure of human bone marrow cell maturation. Int Rev Cytol. 1976;46:251–321.

    Article  CAS  PubMed  Google Scholar 

  46. Lichtman MA, Chamberlain JK, Simon W, et al. The parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release and a physiologic version of vascular invasion and metastasis. Trans Assoc Am Physicians. 1977;90:313–23.

    CAS  PubMed  Google Scholar 

  47. Junt T, Schulze H, Chen Z, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317:1767–70.

    Article  CAS  PubMed  Google Scholar 

  48. Kowata S, Isogai S, Murai K, Ito S, Tohyama K, Ema M, Hitomi J, Ishida Y. Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb Haemost. 2014;112(4):743–56.

    Article  PubMed  Google Scholar 

  49. Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, Ohmori T, Manabe I, Italiano Jr JE, Ryu T, Takayama N, Komuro I, Kadowaki T, Eto K, Nagai R. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209(3):453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishida Y, Ito T, Kuriya S. Effects of c-mpl ligand on cytoplasmic maturation of murine megakaryocytes and on platelet production. J Histochem Cytochem. 1998;46(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  51. Ito T, Ishida Y, Kashiwagi R, Kuriya S. Recombinant human c-Mpl ligand is not a direct stimulator of proplatelet formation in mature human megakaryocytes. Br J Haematol. 1996;94(2):387–90.

    Article  CAS  PubMed  Google Scholar 

  52. Chang Y, Auradé F, Larbret F, Zhang Y, Le Couedic JP, Momeux L, Larghero J, Bertoglio J, Louache F, Cramer E, Vainchenker W, Debili N. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood. 2007;109(10):4229–36.

    Article  CAS  PubMed  Google Scholar 

  53. Ishida Y, Yano K, Ito T, Shigematus H, Sasaki K, Kondo S, Kuriya S. Purification of proplatelet formation (PPF) stimulating factor: thrombin/antithrombin III complex stimulates PPF of megakaryocytes in vitro and platelet production in vivo. Thromb Haemost. 2001;85(2):349–55.

    Google Scholar 

  54. Tamura S, Suzuki-Inoue K, Tsukiji N, Shirai T, Sasaki T, Osada M, Satoh K, Ozaki Y. Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood. 2016;127(13):1701–10.

    Article  CAS  PubMed  Google Scholar 

  55. Machlus KR, Johnson KE, Kulenthirarajan R, Forward JA, Tippy MD, Soussou TS, El-Husayni SH, Wu SK, Wang S, Watnick RS, Italiano Jr JE, Battinelli EM. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood. 2016;127(7):921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thon JN, Montalvo A, Patel-Hett S, et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol. 2010;191:861–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Handagama PJ, Feldman BF, Jain NC, et al. Circulating proplatelets: isolation and quantitation in healthy rats and in rats with induced acute blood loss. Am J Vet Res. 1987;48:962–5.

    CAS  PubMed  Google Scholar 

  58. Thon JN, Macleod H, Begonja AJ, et al. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun. 2012;3:852.

    Article  PubMed  Google Scholar 

  59. Zucker-Franklin D, Philipp CS. Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept. Am J Pathol. 2000;157:69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shugo Kowata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kowata, S., Ishida, Y. (2017). Megakaryopoiesis and Thrombopoiesis. In: Ishida, Y., Tomiyama, Y. (eds) Autoimmune Thrombocytopenia . Springer, Singapore. https://doi.org/10.1007/978-981-10-4142-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4142-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4141-9

  • Online ISBN: 978-981-10-4142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics