Skip to main content

Structural Dynamics and Modal Testing

  • Chapter
  • First Online:
Operational Modal Analysis
  • 2696 Accesses

Abstract

This chapter analyzes the response of a structure subjected to deterministic excitations. Conventional topics in single-degree-of-freedom and multi-degree-of-freedom structures are covered, including free vibration, forced vibration due to harmonic excitation, periodic excitation, impulsive excitation and arbitrary excitation, and modal superposition. Basic concepts in experimental modal testing are discussed as a simple application of structural dynamics, including logarithmic decrement, half-power bandwidth, harmonic load test and impact hammer test. The state-space approach is introduced for analyzing general dynamical systems. The basic principles of numerical solution and Newmark integration schemes are introduced, which allow one to compute the structural response for a given time history of excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari S (2014) Structural damping analysis with generalized damping models. Wiley, New York

    MATH  Google Scholar 

  • Au SK, Ni YC, Zhang FL et al (2012) Full scale dynamic testing and modal identification of a coupled floor slab system. Eng Struct 37:167–178

    Article  Google Scholar 

  • Bachmann H et al (1995) Vibration problems in structures—practical guidelines. Birkhauser Verlag, Basel

    Book  Google Scholar 

  • Beards CF (1996) Structural vibrations: analysis and damping. Halsted Press, New York

    MATH  Google Scholar 

  • Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Bistritz Y (1984) Zero location with respect to the unit circle of discrete-time linear system polynomials. Proc IEEE 72(9):1131–1142

    Article  Google Scholar 

  • Bistritz Y (2002) Zero location of polynomials with respect to the unit circle unhampered by nonessential singularities. IEEE Trans Circ Syst 49(3):305–314

    Article  MathSciNet  Google Scholar 

  • Caughey TK, O’Kelly MEJ (1965) Classical normal modes in damped linear dynamic systems. J Appl Mech 32:583–588

    Article  MathSciNet  Google Scholar 

  • Clough RW, Penzien J (1993) Dynamics of structures. McGraw Hill, New York

    MATH  Google Scholar 

  • EC1 (2005) Eurocode 1: actions on structures, part 1–4, general actions: wind actions. EN 1991-1-4:2005 + A1: 2010. European Committee for Standardization, Brussels

    Google Scholar 

  • ESDU 83009 (2012) Damping of structures, Part 1: tall buildings. Engineering Sciences Data Unit, London

    Google Scholar 

  • Ewins DJ (2000) Modal testing: theory and practice. Research Studies Press, PA

    Google Scholar 

  • Fukuwa N, Nishizaka R, Yagi S et al (1996) Field measurement of damping and natural frequency of an actual steel-framed building over a wide range of amplitudes. J Wind Eng Ind Aerodyn 59:325–347

    Article  Google Scholar 

  • Hildebrand FB (1987) Introduction to numerical analysis, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Hulbert GM (2004) Computational structural dynamics. In: Encyclopedia of computational mechanics. Wiley, New York

    Google Scholar 

  • ISO 4354 (2009) Wind actions on structures. ISO 4354:2009. International Organization for Standards, Switzerland

    Google Scholar 

  • ISO 10137 (2007) Bases for design of structures—serviceability of buildings and walkways against vibrations. ISO 10137:2007. International Organization for Standards, Switzerland

    Google Scholar 

  • Jeary AP (1986) Damping in tall buildings: a mechanism and a predictor. Earthq Eng Struct Dyn 14:733–750

    Article  Google Scholar 

  • Jeary AP (1997) Damping in structures. Wind Eng Indus Aerodyn 72:345–355

    Article  Google Scholar 

  • Kijewski-Correa T, Kilpatrick J, Kareem A et al (2006) Validating wind-induced response of tall buildings: synopsis of the Chicago full-scale monitoring program. J Struct Eng 132(10):1509–1523

    Article  Google Scholar 

  • Kwok KCS, Burtn M, Abdelrazaq, A (2015) Wind-induced motion of tall buildings: designing for habitability. American Society of Civil Engineers, Reston

    Google Scholar 

  • Li QS, Liu DK, Fang JQ et al (2000) Damping in buildings: its neural network model and AR model. Eng Struct 22:1216–1223

    Article  Google Scholar 

  • Maia N, Silva J (1997) Theoretical and experimental modal analysis. Research Studies Press Ltd, Baldock

    Google Scholar 

  • McConnell K (1995) Vibration testing—theory and practice. Wiley, New York

    MATH  Google Scholar 

  • Meirovitch L (1986) Elements of vibration analysis. McGraw-Hill, London

    MATH  Google Scholar 

  • Satake N, Suda K, Arakawa T et al (2003) Damping evaluation using full-Scale data of buildings in Japan. J Struct Eng 129(4):470–477

    Article  Google Scholar 

  • Subbaraj K, Dokainish MA (1989a) A survey of direct time-integration methods in computational structural dynamics–I: explicit methods. Comput Struct 32(6):1371–1386

    Article  MathSciNet  MATH  Google Scholar 

  • Subbaraj K, Dokainish MA (1989b) A survey of direct time-integration methods in computational structural dynamics–II: implicit methods. Comput Struct 32(6):1387–1410

    Article  MathSciNet  MATH  Google Scholar 

  • Tamura Y, Kareem A (eds) (2013) Advanced structural wind engineering. Springer, Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Kui Au .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Au, SK. (2017). Structural Dynamics and Modal Testing. In: Operational Modal Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4118-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4118-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4117-4

  • Online ISBN: 978-981-10-4118-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics