Skip to main content

Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Aerial Phytopathogens and Pests

  • Chapter
  • First Online:

Abstract

In the context of an increasing worldwide food requirement, the control of crop diseases is crucial to guarantee high and stable yield, as well as sanitary quality. An environmentally friendly contribution to this could be biocontrol using beneficial microorganisms, such as arbuscular mycorrhizal fungi (AMF). AMF establish symbiosis with their host plants, thus influencing their growth, but they also induce tolerance to environmental stresses. Among stresses that can be alleviated through AMF inoculation, plant attacks by aerial pathogens and pests have so far been underestimated. Therefore, we present here an overview of studies focusing on AMF-mediated bioprotection against aerial pathogens and pests. Obtained protection is mainly due to changes in host nutrition and induction of defense following the establishment of arbuscular mycorrhizal symbiosis. This protection can vary greatly depending on different factors such as host genotype, AMF species involved, pest and pathogen lifestyles, interactions between AMF and other microorganisms, or even crop management practices. Finally, some future challenges for the use of AMF in biocontrol are discussed.

M. Comby and G. Mustafa are co-first authors; A. Lounès-Hadj Sahraoui and Ph. Reignault are co-last authors

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Alejo-Iturvide F, Márquez-Lucio MA, Morales-Ramírez I et al (2008) Mycorrhizal protection of chili plants challenged by Phytophthora capsici. Eur J Plant Pathol 120:13–20

    Article  Google Scholar 

  • Alkan N, Gadkar V, Coburn J et al (2004) Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real-time polymerase chain reaction. New Phytol 161:877–885

    Article  CAS  Google Scholar 

  • Angelard C, Tanner CJ, Fontanillas P et al (2014) Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME J 8:284–294

    Article  CAS  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  CAS  Google Scholar 

  • Badri A, Stefani FO, Lachance G et al (2016) Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza 26:721–733

    Article  CAS  PubMed  Google Scholar 

  • Barea J-M, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trend Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (1999) Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J Exp Bot 50:1663–1668

    Article  CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Calonne M, Fontaine J, Debiane D et al (2010) Propiconazole toxicity on the non-target organism, the arbuscular mycorrhizal fungus, Glomus irregulare. In: Carisse O (ed) Fungicides. InTech Europe, pp 23–39

    Google Scholar 

  • Calonne M, Lounès-Hadj Sahraoui A, Campagnac E et al (2012) Propiconazole inhibits the sterol 14α-demethylase in Glomus irregulare like in phytopathogenic fungi. Chemosphere 87:376–383

    Google Scholar 

  • Cameron DD, Neal AL, van Wees SC et al (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A et al (2008) Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 69:2912–2919

    Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A et al (2009) Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19:365–374

    Google Scholar 

  • Campagnac E, Lounès-Hadj Sahraoui A, Debiane D et al (2010) Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza 20:167–178

    Google Scholar 

  • Campos-Soriano L, García-martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Castellanos-Morales V, Cárdenas-Navarro R, García-Garrido J et al (2012) Bioprotection against Gaeumannomyces graminis in barley–a comparison between arbuscular mycorrhizal fungi. Plant Soil Environ 58:256–261

    Google Scholar 

  • Cavagnaro TR (2014) Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol Biochem 78:38–44

    Article  CAS  Google Scholar 

  • Cervantes-Gámez RG, Bueno-Ibarra MA, Cruz-Mendívil A et al (2016) Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Mol Biol Report 34:89–102

    Article  CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM et al (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Cosme M, Franken P, Mewis I et al (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24:565–570

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Ramírez-Trujillo A, Walker V et al (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Hamel C, Bainard LD et al (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166

    Article  CAS  Google Scholar 

  • D’Amelio R, Massa N, Gamalero E et al (2007) Preliminary results on the evaluation of the effects of elicitors of plant resistance on chrysanthemum yellows phytoplasma infection. Bull Insectol 60:317

    Google Scholar 

  • de la Noval B, Pérez E, Martínez B et al (2007) Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460

    Article  PubMed  CAS  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Douds DD Jr, Nagahashi G, Hepperly PR (2010) On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production. Bioresour Technol 101:2326–2330

    Article  CAS  PubMed  Google Scholar 

  • Dugassa GD, Von Alten H, Schönbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    Article  CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H et al (2012) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Feldmann F, Boyle C (1998) Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia hiemalis cultivars. J Plant Dis Protect 105:121–129

    Google Scholar 

  • Fernández I, Merlos M, López-Ráez J et al (2014) Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. J Chem Ecol 40:791–803

    Article  PubMed  CAS  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Direct quantification of fungal DNA from soil substrate using real-time PCR. J Microbiol Methods 53:67–76

    Article  CAS  PubMed  Google Scholar 

  • Fiorilli V, Catoni M, Francia D et al (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J Plant Pathol 93:237–242

    Google Scholar 

  • Fontana A, Reichelt M, Hempel S et al (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol 35:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjær MF et al (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113:19–33

    Article  CAS  PubMed  Google Scholar 

  • Gallou A, Mosquera HPL, Cranenbrouck S et al (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76:20–26

    Article  CAS  Google Scholar 

  • Gange AC (2006) Insect-mycorrhizal interactions: patterns, processes, and consequences. In: Ohgushi T, Craig TP, Price PW (eds) Indirect interaction webs: nontrophic linkages through induced plant traits. Cambridge University Press, Cambridge, pp 124–144

    Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Garcia-Garrido JM, Tribak M, Rejon-Palomares A et al (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exp Bot 51:1443–1448

    Article  CAS  PubMed  Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal–plant–insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  • Gernns H, Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen–is a compensation possible? Mycorrhiza 11:237–243

    Article  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hepper CM, Azcon-Aguilar C, Rosendahl S et al (1988) Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.) New Phytol 110:207–215

    Article  Google Scholar 

  • Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Physiol 161:1379–1383

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Gilbert L (2015) Interplant signalling through hyphal networks. New Phytol 205:1448–1453

    Article  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA et al (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S et al (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen J, Yohalem D (2004) Interactions between mycorrhiza and powdery mildew of cucumber. Mycol Prog 3:123–128

    Article  Google Scholar 

  • Lee CS, Lee YJ, Jeun YC (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J 21:237–243

    Article  Google Scholar 

  • Li Y, Liu Z, Hou H et al (2013) Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol Plant 35:3465–3475

    Google Scholar 

  • Lingua G, D’Agostino G, Massa N et al (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Maffei G, Miozzi L, Fiorilli V et al (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24:179–186

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miozzi L, Catoni M, Fiorilli V et al (2011) Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Mol Plant-Microbe Interact 24:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Møller K, Kristensen K, Yohalem D et al (2009) Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 49:120–125

    Article  Google Scholar 

  • Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H et al (2015a) Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55–64

    Article  CAS  Google Scholar 

  • Mora-Romero GA, Gonzalez-Ortiz MA, Quiroz-Figueroa F et al (2015b) PvLOX2 silencing in common bean roots impairs arbuscular mycorrhiza-induced resistance without affecting symbiosis establishment. Funct Plant Biol 42:18–30

    Article  CAS  Google Scholar 

  • Mustafa G, Randoux B, Tisserant B et al (2017) Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. Funct Plant Biol. doi:10.1071/FP16206

  • Mustafa G, Randoux B, Tisserant B et al (2016) Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza 26:685–697

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV et al (2015a) Role of methyl jasmonate in the expression of mycorrhizal induced resistance against Fusarium oxysporum in tomato plants. Physiol Mol Plant Pathol 92:139–145

    Article  CAS  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV et al (2015b) Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol 17:625–631

    Article  CAS  PubMed  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U et al (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oruc HH (2010) Fungicides and their effects on animals. In: Carisse O (ed) Fungicides. InTech, Rijeka, pp 349–362

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pel MJC, Pieterse CM (2013) Microbial recognition and evasion of host immunity. J Exp Bot 64:1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E et al (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J et al (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 123–135

    Chapter  Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA et al (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 193–207

    Chapter  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C et al (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Rosendahl S, Mcgee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Ryan MH, Angus J (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agric Ecosyst Environ 163:37–53

    Article  Google Scholar 

  • Ryan MH, Van Herwaarden AF, Angus JF et al (2005) Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270:275–286

    Article  CAS  Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159:28–40

    Article  Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203:107–114

    Article  PubMed  CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K et al (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant-Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B et al (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA et al (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Selin C, de Kievit TR, Belmonte MF et al (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Richard F, He X et al (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Selosse MA, Bessis A, Pozo MJ (2014) Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 22:607–613

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H et al (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant-Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Sipahioglu MH, Demir S, Usta M et al (2009) Biological relationship of potato virus Y and arbuscular mycorrhizal fungus Glomus intraradices in potato. Pest Tech 3:63–66

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith SE, Facelli E, Pope S et al (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Song YY, Zeng RS, Xu JF et al (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Ye M, Li C et al (2014) Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci Rep 4:3915

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen D, Lu K et al (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    PubMed  PubMed Central  Google Scholar 

  • St-Arnaud M, Vimard B, Fortin J et al (1997) Inhibition of Fusarium oxysporum f-sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005

    Article  Google Scholar 

  • Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities – marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232

    Article  CAS  PubMed  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vestberg M, Palmujoki H, Parikka P et al (1994) Effect of arbuscular mycorrhizas on crown rot (Phytophthora cactorum) in micropropagated strawberry plants. Special issue of the third COST 87–8.10 joint meeting, 17–18 September 1993, Agricultural Research Centre of Finland, Laukaa, Finland

    Google Scholar 

  • Vicari M, Hatcher PE, Ayres PG (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Article  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T et al (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Mycorrhiza. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Volpin H, Elkind Y, Okon Y et al (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wehner J, Antunes PM, Powell JR et al (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201

    Article  Google Scholar 

  • Werner GD, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442

    Article  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998a) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998b) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Zhu YG, Lin AJ et al (2006) Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L. Chemosphere 64:1627–1632

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lounès-Hadj Sahraoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Comby, M. et al. (2017). Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Aerial Phytopathogens and Pests. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_9

Download citation

Publish with us

Policies and ethics