Skip to main content

Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants

  • Chapter
  • First Online:

Abstract

Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma membrane permeability (malondialdehyde and ATPase), reactive oxygen species (ROS) and antioxidants, osmotic adjustment, carbohydrate metabolism, nutrient acquisition, and secondary metabolism under low or high temperature stress. The possible mechanisms of AM symbiosis improving temperature stress tolerance of the host plants via enhancing water and nutrient uptake, improving photosynthetic capacity and efficiency, protecting plant against oxidative damage, and increasing accumulation of osmolytes are discussed. This chapter also provides some future perspectives for better understanding the mechanisms of AM plant tolerance against temperature stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel Latef AA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  CAS  Google Scholar 

  • Akiyama K (2007) Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci Biotechnol Biochem 71(6):1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, Hahn E, Paek K (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV et al (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Andersen CP, Sucoff EI, Dixon RK (1987) The influence of low soil temperature on the growth of vesicular-arbuscular mycorrhizal Fraxinus pennsylvanica. Can J For Res 17:951–956

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Sherlock D, Fitter AH et al (2009) Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. New Phytol 182:188–199

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Stodola JW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115:285–295

    Article  Google Scholar 

  • Bainard LD, Bainard JD, Hamel C et al (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosysten. FEMS Microbiol Ecol 88:333–344

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17:479–492

    Article  Google Scholar 

  • Barrett G, Campbell CD, Fitter AH et al (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol 48:102–105

    Article  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in high plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Berta G, Copetta A, Gamalero E et al (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170

    Article  PubMed  Google Scholar 

  • Botnen S, Kauserud H, Carlsen T et al (2015) Mycorrhizal fungal communities in coastal sand dunes and heaths investigated by pyrosequencing analyses. Mycorrhiza 25(6):447–456

    Article  PubMed  Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90(5):1378–1388

    Article  PubMed  Google Scholar 

  • Büscher M, Zavalloni C, de Boulois HD et al (2012) Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environ Exp Bot 81:62–71

    Article  Google Scholar 

  • Cabral C, Ravnskov S, Tringovska I et al (2016) Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 408(1):385–399

    Article  CAS  Google Scholar 

  • Camejo D, Rodríguez P, Morales MA et al (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Camenzind T, Hempel S, Homeier J et al (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biol 20(12):3646–3659

    Article  Google Scholar 

  • Charest C, Dalpé Y, Brown A (1993) The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza 4:89–92

    Article  Google Scholar 

  • Chen S, Jin W, Liu A et al (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Chen XY, Song FB, Liu FL et al (2014) Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Sci World J 2014:956141

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbial Ecol 73:197–214

    CAS  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18:597–600

    Article  CAS  PubMed  Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N et al (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  • EI-Tohamy W, Schnitzler WH, EI-Behairy U et al (1999) Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants (Phaseolus vulgaris). J Appl Bot 73:178–183

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN et al (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Fernandez O, Bethencourt L, Quero A et al (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Olsson PA, Rouhier H et al (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Tisserant B et al (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:526–532

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M et al (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Gutknecht JLM, Field CB, Balser TC (2012) Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biol 18:2256–2269

    Article  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF et al (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  CAS  Google Scholar 

  • Haugen LM, Smith SE (1992) The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Plant Soil 145:71–80

    Article  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P et al (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol 14:1181–1190

    Article  Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol 73:71–80

    Article  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • Heinemeyer A, Ridgway KP, Edwards EJ et al (2003) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Global Change Biol 10:52–64

    Article  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N et al (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wu S, Sun Y et al (2015) Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Mycorrhiza 25(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    Article  CAS  PubMed  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plant. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Karasawa T, Hodge A, Fitter AH (2012) Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant Cell Environ 35:819–828

    Article  CAS  PubMed  Google Scholar 

  • Karim MA, Fracheboud Y, Stamp P (1999) Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiol Plant 105:685–693

    Article  CAS  Google Scholar 

  • Kim HS, Oh JM, Luan S et al (2013) Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed. J Plant Physiol 170:828–837

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sangama S, Amrutha RN et al (2005) Regulation of proline biosynthesis degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    Article  CAS  Google Scholar 

  • Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kytöviita M, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94(8):1309–1315

    Article  PubMed  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui AL (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Liu XH, Cai QS et al (2008) Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. J Integr Plant Biol 50:723–732

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Li YJ, Hou HY et al (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Chen S, Chang R et al (2014a) Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. J Plant Res 127:775–785

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Ma LN, He XY et al (2014b) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191

    Article  Google Scholar 

  • Liu N, Chen X, Song F et al (2016) Effects of arbuscular mycorrhiza on growth and nutrition of maize plants under low temperature stress. Philipp Agric Sci 99(3):246–252

    Google Scholar 

  • Lumini E, Vallino M, Alguacil MM et al (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21(5):1696–1707

    Article  PubMed  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244

    Article  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T et al (2006) Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara Y, Kayukawa Y, Fukui H (2000) Temperature-stress tolerance of asparagus seedling through symbiosis with arbuscular mycorrhizal fungus. J Japan Soc Hort Sci 69(5):570–575

    Article  Google Scholar 

  • Matsubara Y, Hirano I, Sassa D et al (2004) Alleviation of high temperature stress in strawberry plants infected with arbuscular mycorrhizal fungi. Environ Control Biol 42(2):105–111

    Article  Google Scholar 

  • Matteucci M, D’Angeli S, Errico S et al (2011) Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L, genotypes with different cold hardiness. J Exp Bot 62:3403–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    Article  CAS  PubMed  Google Scholar 

  • Mazorra LM, Nunez M, Echerarria E et al (2002) Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Plant Biol 45:593–596

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F et al (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Nelsen CE, Safir GR (1982) The water relations of well-watered, mycorrhizal and non-mycorrhizal onion plants. J Am Soc Hortic Sci 107:271–274

    Google Scholar 

  • Ngwene B, Gabriel E, George E (2013) Influence of different mineral nitrogen sources (NO3 -N vs. NH4 +-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices-cowpea symbiosis. Mycorrhiza 23:107–117

    Article  CAS  PubMed  Google Scholar 

  • Paradis R, Dalpé Y, Charest C (1995) The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol 129:637–642

    Article  Google Scholar 

  • Raju PS, Clark RB, Ellis JR et al (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Ruotsalainen AL, Kytöviita M (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233

    Article  PubMed  Google Scholar 

  • Schenck NC, Graham SO, Green NE (1975) Temperature and light effects on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67:1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino-acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith GS, Roncadori RW (1986) Responses of three vesicular-arbuscular mycorrhizal fungi at four soil temperatures and their effects on cotton growth. New Phytol 104:89–95

    Article  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13

    Article  PubMed  Google Scholar 

  • Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biol 10:1909–1921

    Article  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  PubMed  Google Scholar 

  • Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrecillas E, Torres P, Alguacil MM et al (2013) Influence of habitat and climate variables on arbuscular mycorrhizal fungus community distribution, as revealed by a case study of facultative plant epiphytism under semiarid conditions. Appl Environ Microbiol 79(23):7203–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C et al (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Verma AK, Upadhyay SK, Verma PC et al (2011) Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol 13:325–332

    Article  CAS  PubMed  Google Scholar 

  • Volkmar KM, Woodbury W (1989) Effects of soil temperature and depth on colonization and root and shoot growth of barley inoculated with vesicular-arbuscular mycorrhizae indigenous to Canadian prairie soil. Can J Bot 67:1702–1707

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M et al (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang B, Funakoshi DM, Dalpé Y et al (2002) Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature. Mycorrhiza 12:93–96

    Article  PubMed  CAS  Google Scholar 

  • Wu QS, Zou YN (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293

    Article  CAS  Google Scholar 

  • Yaneva IA, Hoffmann GW, Tischner R (2002) Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol Plant 114:65–72

    Google Scholar 

  • Young A (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

  • Zeng Y, Yu J, Cang J et al (2011) Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures. Biosci Biotechnol Biochem 75:681–687

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Hamel C, Kianmehr H et al (1995) Root-zone temperature and soybean [Glycine max. (L.) Merr.] vesicular-arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298

    Article  Google Scholar 

  • Zhang RQ, Zhu HH, Zhao HQ et al (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Ma H, Liang K et al (2012) Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 31:427–435

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010a) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010b) Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu SQ et al (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346:189–199

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu FL et al (2015) Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop Pasture Sci 66(1):62–70

    CAS  Google Scholar 

  • Zhu XC, Song FB, Liu FL (2016) Altered amino acid profile of arbuscular mycorrhizal maize plants under low temperature stress. J Plant Nutr Soil Sci 179:186–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for the support by the “One-Three-Five” Strategic Planning Program of Chinese Academy of Sciences (IGA-135-04), the Science Foundation of Chinese Academy of Sciences (XDB15030103), and the National Natural Science Foundation of China (31370144; 41571255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhu, X., Song, F., Liu, F. (2017). Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_8

Download citation

Publish with us

Policies and ethics