Skip to main content

Arbuscular Mycorrhizal Fungi and Heavy Metal Tolerance in Plants

  • Chapter
  • First Online:
Book cover Arbuscular Mycorrhizas and Stress Tolerance of Plants

Abstract

Arbuscular mycorrhizal (AM) fungi are soil fungi developing symbiotic association with most terrestrial plants. In such a symbiosis, the fungi provide the host plant with water and nutrients in exchange for carbon. The beneficial effects of AM fungi on the growth of the host plant under stresses such as salinity, drought, heavy metals, etc. have been indicated by research work. However, more has yet to be elucidated on the mechanisms, which may increase the host plant as well as the fungal tolerance under stress. The alleviating effects of the fungi on plant growth and the environment under stress are mostly due to the superb abilities of the fungi in developing physiological and morphological mechanisms. The stress of heavy metals is among the most important stresses adversely affecting plant growth and the environment. The use of biological methods including the use of soil microbes such as AM fungi, plant growth-promoting rhizobacteria (PGPR), and endophytic bacteria has been proved to be among the most effective ones alleviating the adverse effects of stress on plant growth and the environment. The details of bioremediation mechanisms used by the fungi in association with the host plant including the expression of stress genes, the production of glomalin, the fungal phylogeny, and the allocation of heavy metals to different parts of mycorrhizal plant under the stress of heavy metals and some of the most recent advancement in this respect are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Allah EF, Abeer H, Alqarawi AA et al (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  PubMed  Google Scholar 

  • Behera K (2014) Phytoremediation, transgenic plants and microbes. In: Sustainable Agriculture Reviews. Springer, Cham, pp 65–85

    Chapter  Google Scholar 

  • Cabral L, Siqueira J, Soares C et al (2010) Retention of heavy metals by arbuscular mycorrhizal fungi mycelium. Química Nova 33:25–29

    Article  CAS  Google Scholar 

  • Cabral L, Soares C, Giachini A et al (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Calonne M, Sahraoui AL-H, Campagnac E et al (2012) Propiconazole inhibits the sterol 14a-demethylase in Glomus irregulare like in phytopathogenic fungi. Chemosphere 87:376–383

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Debiane D, Calonne M, Fontaine J et al (2011) Lipid content disturbance in the arbuscular mycorrhizal, Glomus Irregulare grown in monoxenic conditions under PAHs pollution. Fungal Biol 115:782–792

    Article  CAS  PubMed  Google Scholar 

  • Declerck S, Strullu D, Fortin J (2005) In vitro culture of mycorrhizas. Springer, New York

    Book  Google Scholar 

  • Ferrol N, González-Guerrero M, Valderas A et al (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559

    Article  CAS  Google Scholar 

  • Fobert PR, Despres C (2005) Redox control of systemic acquired resistance. Curr Opin Plant Biol 8:378–382

    Article  CAS  PubMed  Google Scholar 

  • Friedlova M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5:21–27

    CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25:165–180

    Article  PubMed  Google Scholar 

  • Gil-Cardeza ML, Ferri A, Cornejo P et al (2014) Distribution of chromium species in a Cr-polluted soil: presence of Cr (III) in glomalin related protein fraction. Sci Total Environ 493:828–833

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M et al (2005) Characterization of a Glomus Irregularis gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Gen Biol 42:130–140

    Article  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C et al (2007) GintMT1 encodes a functional metallothionein in Glomus irregularis that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  Google Scholar 

  • González-Guerrero M, Benabdellah K, Valderas A et al (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus irregularis. Mycorrhiza 20:137–146

    Article  PubMed  Google Scholar 

  • Grill E, Winnacker E, Zenk M (1987) Phytochelatins, a class of heavy metal binding peptides from plants are functionally analogous to metallothioneins. Proc Nat Acad Sci USA 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • He L, Yang H, Yu Z et al (2014) Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels. J Environ Sci 26:2034–2040

    Article  Google Scholar 

  • Hetrick B, Wilson G, Figge D (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut 86:171–179

    Article  CAS  PubMed  Google Scholar 

  • Holleman A, Wiberg E (1985) Lehrbuch der Anorganischen Chemie. Nabu Press, Berlin

    Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I et al (2015) Aspects of mycorrhizal colonization in adaptation of sweet marjoram (Origanum majorana L.) grown on industrially polluted soil. Turk J Biol 39:461–468

    Article  CAS  Google Scholar 

  • Jacobson K (1997) Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. J Arid Environ 35:59–75

    Article  Google Scholar 

  • Johnson N, Gehring C, Jansa J (2016) Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Elsevier, Cambridge, MA

    Google Scholar 

  • Jamal A, Ayuba N, Usmana M (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soyabean and lentil. Int J Phytoremed 4:205–221

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH et al (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kanwal S, Bano A, Malik RN (2016) Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. Afr J Biotechnol 15:872–883

    Article  Google Scholar 

  • Khan A, Kuek C, Chaudhry T et al (2000) Role of plants, mycorrhizae and phytochelators en heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Dayananda S, Subramanyam C (2005) Copper alone, but not oxidative stress, induces copper–metallothionein gene in Neurospora crassa. FEMS Microbiol Lett 242:45–50

    Article  CAS  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Poll 153:497–522

    Article  CAS  Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops–a meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF et al (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutrit 130:1455S–1458S

    CAS  PubMed  Google Scholar 

  • Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutrit 133:1460S–1462S

    CAS  PubMed  Google Scholar 

  • Millar NS, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F et al (2009a) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F et al (2009b) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2010b) Arbuscular mycorrhizal fungi and heavy metals. In: Gupta VK, Tuohy M, Gaur RK (eds) Fungal biochemistry and biotechnology. LAMBERT Academic Publishing AG & Co. KG, Saarbrücken

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2016) Soybean production and heavy metal stress. In: Miransari M (ed) Abiotic and biotic stresses in soybean production. Soybean production. Elsevier, Amsterdam, pp 197–216

    Chapter  Google Scholar 

  • Mohammad M, Hamad S, Malkawi H (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathol 77:1045–1050

    Article  Google Scholar 

  • Öpik M, Moora M, Liira J et al (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Pawlowska T, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  Google Scholar 

  • Sajedi NA, Ardakani MR, Rejali F et al (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Castro I, Ferrol N, Barea J (2012) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. J Arid Environ 80:1–9

    Article  Google Scholar 

  • Schneider J, Bundschuh J, do Nascimento C (2016) Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Sci Total Environ 572:86–97

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shabani L, Sabzalian MR, Mostafavi Pour S (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Siqueira J, Soares C (2006) Mycorrhizal fungi influence on brachiariagrass growth and heavy metal extraction in a contaminated soil. Pesq Agr Bras 41:1749–1757

    Article  Google Scholar 

  • Soares C, Siqueira J (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contamined soil. Biol Fert Soils 44:833–841

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Nat Acad Sci USA 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Wang F, Lin X, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—a field case. Environ Pollut 147:248–255

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metals and abundance of arbuscular in soil polluted by atmospheric deposition from a smelter. Biol Fert Soils 19:22–28

    Article  CAS  Google Scholar 

  • Whitmore A (2006) The emperors new clothes: sustainable mining? J Clean Prod 14:309–314

    Article  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, McGrouther K, Huang J et al (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Chen B et al (2016a) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Sun Y et al (2016b) Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses. J Haz Mat 316:34–42

    Article  CAS  Google Scholar 

  • Yang W, Zhang T, Li S et al (2014) Metal removal from and microbial property improvement of a multiple heavy metals contaminated soil by phytoextraction with a cadmium hyperaccumulator Sedum alfredii H. J Soils Sedim 14:1385–1396

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ren BH, Wu SL et al (2015) Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere 119:224–230

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Song F, Liu S et al (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Miransari, M. (2017). Arbuscular Mycorrhizal Fungi and Heavy Metal Tolerance in Plants. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_7

Download citation

Publish with us

Policies and ethics