Skip to main content

Arbuscular Mycorrhizal Fungi and Plant Growth on Serpentine Soils

  • Chapter
  • First Online:

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate fungi (root symbionts) of the phylum of Glomeromycota that associated with 70–90% of land’s plants. AMF are found in many types of soils and ecosystems. AMF can colonize plant roots on serpentine soils, and 11 AMF genera and Glomeraceae as dominant family are found. Diversity of AMF on serpentine soil is influenced by soil chemical properties (metal content, Ni and Mg/Ca ratio), plant species, and vegetation types as well as AMF types. Inoculation of AMF improved growth, biomass, and nutrient uptake (especially P) for sensitive plant and nickel accumulators. Ni uptake by inoculated plants is inconsistent, showing that AMF reduced Ni in sensitive plant tissues. Otherwise, AMF increased Ni uptake in hyperaccumulator plants. Effectiveness of AMF is determined by plant species and AMF. AMF colonization is essential for vegetation successional acceleration and revegetation success in nickel post-mining land. AMF are potential to be developed as a biological fertilizer to support revegetation of nickel post-mining land on serpentine soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambodo AP (2002) Mine reclamation – the PT Inco experience. Proceedings of the 26th Annual British Columbia Mine Reclamation Symposium in Dawson Creek, BC

    Google Scholar 

  • Amir H, Parrier N, Riagault F et al (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35

    Article  CAS  Google Scholar 

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    Article  CAS  PubMed  Google Scholar 

  • Amir H, Lagrange A, Hassaïne N et al (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595

    Article  CAS  PubMed  Google Scholar 

  • Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of Hakea verrucosa F. M. (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  • Castelli JP, Casper BB (2003) Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323–336

    Article  Google Scholar 

  • Coleman R, Jove C (1992) Geological origin of serpentinites. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation ofultramafic (serpentine) soils. Intercept Ltd, Andover, pp 1–18

    Google Scholar 

  • Cumming JR, Kelly CN (2007) Pinus virginiana invasion influences soils and arbuscular mycorrhizae of a serpentine grassland. J Torrey Bot Soc 134(1):63–73

    Article  Google Scholar 

  • Doubková P, Suda J, Sudová R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant Soil 345:325–338

    Article  Google Scholar 

  • Doubková P, Suda J, Sudová R (2012) The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol Biochem 44:56–64

    Article  Google Scholar 

  • Doubkova P, Vlasakova E, Sudova R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  CAS  Google Scholar 

  • Ent AVD, Baker AJM, Van Balgooy MMJ et al (2013) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining nickel hyperaccumulators and opportinities for phytomining. University Of Queensland. J Chem Explor 128:72–79

    Google Scholar 

  • Ent AVD, Erskine P, Sumail S (2015) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  Google Scholar 

  • Gladish S, Frank JL, Southworth D (2010) The serpentine syndrome belowground: ectomycorrhizas and hypogeous fungi associated with conifers. Can J For Res 40:1671–1679

    Article  CAS  Google Scholar 

  • Gonçalves SC, Martins-Loução MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230

    Article  PubMed  Google Scholar 

  • Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9(2):95–98

    Article  CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    Article  CAS  Google Scholar 

  • Gustafson DJ, Casper BB (2004) Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant Soil 259:9–17

    Article  CAS  Google Scholar 

  • Hopkins NA (1987) Mycorrhizae in a California serpentine grassland community. Can J Bot 65:484–487

    Article  Google Scholar 

  • Husna (2010) Pertumbuhan bibit kayu kuku (Pericopsis mooniana THW) melalui aplikasi fungi mikoriza arbuskula (FMA) dan ampas sagu pada media tanah bekas tambang nikel [thesis]. Univeristas Halu Oleo, Kendari

    Google Scholar 

  • Husna, Tuheteru FD, Arif A (2012) Post-mine land re-vegetation in Southeast Sulawesi biotechnology-based Mycorrhizal Fungi. Proceeding of International Conference on Perspectives of Tropical Forest Rehabilitation Better Forest Functions and Management. Faculty of Forestry UGM, Yogyakarta, pp 186–190

    Google Scholar 

  • Husna, Budi SWR, Mansur I, Kusmana C, Kramadibrata K (2014) Arbuscular Mycorrhizal Fungi from Rhizosphere of Pericopsis mooniana (Thw.) Thw. in South-East Sulawesi. Berita Biologi 13(3):263–273

    Google Scholar 

  • Husna, Budi SWR, Mansur I, Kusmana C (2015) Diversity of arbuscular mycorrhizal fungi in the growth habitat of kayu kuku (Pericopsis mooniana Thw.) in Southeast Sulawesi. Pak J Biol Sci 18(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Husna, Tuheteru FD, Khalifah N (2016a)Symbiosis arbuscular mycorrhizal fungi with pioneer plants on nickel post mining land. Presented paper on national seminar of Silviculture IV.Faculty of Forestry, Mulawarman University, Balikpapan (Indonesia) 19–20 Juli 2016

    Google Scholar 

  • Husna, Sri Wilarso Budi R, Mansur I, Kusmana C (2016b) Growth and nutrient status of kayu kuku (Pericopsis mooniana Thw.) with mycorrhiza in soil media of nickel post mining. Pak J Biol Sci 19:158–170

    Article  Google Scholar 

  • Ji BM, Bentivenga SP, Casper BB (2010) Evidence for ecological matching of whole AM fungal communities to the local plant–soil environment. Ecology 91:3037–3046

    Article  PubMed  Google Scholar 

  • Jourand P, Ducousso M, Loulergue-Majorel C et al (2010a) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Ducousso M, Reid R et al (2010b) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Kayama M, Choi D, Tobita H et al (2006) Comparison of growth characteristics and tolerance to serpentine soil of three ectomycorrhizal spruce seedlings in northern Japan. Trees 20:430–440

    Article  CAS  Google Scholar 

  • Ker K, Christine C (2009) Nickel remediation by AM-colonized Sunflower. Mycorrhiza 20:399–406

    Article  Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation,geology, soils and management problems. University of California Press, Berkeley

    Google Scholar 

  • Lagrange A, Ducousso M, Jourand P et al (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    Article  CAS  PubMed  Google Scholar 

  • Lagrange A, L’Huillier L, Amir H (2013) Mycorrhizal status of Cyperaceae from new Caledonian ultramafic soils: effects of phosphorus availability on arbuscular mycorrhizal colonization of Costularia comosa under field conditions. Mycorrhiza 23:655–661

    Article  PubMed  Google Scholar 

  • Lioi L, Giovannetti M (1989) Vesicular-arbuscular mycorrhizae and species of the Endogonaceae in an Italian serpentine soil. G Bot Ital 123:1–8

    Article  Google Scholar 

  • Mansur I (2010) Teknik Silvikultur untuk Reklamasi Lahan Bekas Tambang. SEAMEO BIOTROP, Bogor. (in Indonesia)

    Google Scholar 

  • Marpaung P, Setiadi Y, Tobing B (1994) Revegetation development and progress in nickel mine sites at PT. International Nickel Indonesia. In: Simatupang M, Wahju BN (eds) Mineral development in Asia Pasific into the year 2000. Proceeding of the 4th Asia Pacific mining Conference, Jakarta 26–29 Oktober 1994. Asean Federation of Mining Association, Jakarta

    Google Scholar 

  • O’Dell RE, Claassen VP (2009) Serpentine revegetation: a review. Soil and biota of serpentine: a world view 2009. Northeast Nat 16:253–271

    Article  Google Scholar 

  • Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W et al (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of ni-hyperaccumulator Berkheya coddii. X-Ray Spectrom 37:129–132

    Article  CAS  Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D et al (2011) The effect of mycorrhiza on the growth and elemental composition of ni-hyperaccumulating plant Berkheya coddii roessler. Environ Pollut 159:3730–3738

    Article  CAS  PubMed  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo massif, New Caledonia. Mycorrhiza 16:449–458

    Article  PubMed  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramic rocks in the tropical far east. Perspect Plant Ecol Evol Syst 6(1,2):105–124

    Article  Google Scholar 

  • Schechter SP, Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol Ecol 17:3198–3210

    Article  CAS  PubMed  Google Scholar 

  • Setiadi Y, Setiawan A (2011) Study of arbuscular mycorrhizal fungi status at rehabilitation post-nickel mining area (Case study at PT INCO Tbk. Sorowako, South Sulawesi). J Silvikultur Tropika 3(1):88–95

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, USA

    Google Scholar 

  • Southworth D, Tackaberry LE, Massicotte HB (2014) Mycorrhizal ecology on serpentine soils. Plant Ecol Divers 7(3):445–455

    Article  Google Scholar 

  • Tuheteru FD, Husna, Arif A (2011) Response of growth and dependency of Albizia saponaria (Lour.) Miq on local arbuscular mycorrhizae fungi from Southeast Sulawesi in post-nickel mining soil. Berita Biologi 5:605–611

    Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Vivas A, Biró B, Németh T et al (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    Article  CAS  Google Scholar 

  • Whitten AJ, Mustafa M, Henderson GS (1987) Ekologi Sulawesi. Gadjah Mada University Press, Yogyakarta

    Google Scholar 

Download references

Acknowledgments

This research was supported by a competitive grant (No. 228c.1/UN29.20/PP/2016) and a fundamental grant (No. 229.a.1/UN.29.20/PPM/2016) of the Ministry of Research, Technology and Higher Education. The author would like to thank the leadership of the PT. Vale Indonesia (PT.) Pomalaa Region, Kolaka, and PT. Stargate Pacific Resources, North Konawe, Southeast Sulawesi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Husna or Faisal Danu Tuheteru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Husna, Tuheteru, F.D., Arif, A. (2017). Arbuscular Mycorrhizal Fungi and Plant Growth on Serpentine Soils. In: Wu, QS. (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_12

Download citation

Publish with us

Policies and ethics