Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 494 Accesses

Abstract

In this chapter, a literature survey on the manufacturing processes of hybrid freeform surfaces is presented. Section 2.1 discusses the main principles and the limitations of FTS/SSS diamond turning and other multiple-axis diamond machining techniques. Section 2.2 covers the existing CAD/CAM/CAE technologies employed for the manufacturing of hybrid freeform surfaces, and discusses the needs for the surface generation methodologies to produce an accurate hybrid freeform surface. Lastly, Sect. 2.3 presents the concluding remarks that lead to this dissertation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis GE, Roblee JW, Hedges AR. Comparison of freeform manufacturing techniques in the production of monolithic lens arrays. Proc SPIE 2009;7426 742605-1.

    Google Scholar 

  2. http://www.iiviinfrared.com.

  3. Huang C, Li L, Yi AY. Design and fabrication of a micro Alvarez lens array with a variable focal length (Technical paper). Microsystems Technology 2009;15:559–63.

    Google Scholar 

  4. Li L, Yi AY. Microfabrication on a curved surface using 3D microlens array projection. J Micromechanical Microeng 2009;19:105010.

    Google Scholar 

  5. Li L, Yi AY. Design and fabrication of a freeform prism array for 3D microscopy. J Opt Soc Am A 2010;27(12).

    Google Scholar 

  6. Li L, Yi AY. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Appl Opt 2012;51(12).

    Google Scholar 

  7. Patterson SR, Magrab EB. Design and testing of a fast tool servo for diamond turning. Precis Eng. 1985;7(3):123–8.

    Article  Google Scholar 

  8. Meinel AB, Meinel MP, Stacy JE, Saito TT, Patterson SR. Wavefront correctors by diamond turning. Appl Opt 1989;25.

    Google Scholar 

  9. Luttrell DE. Machining non-axisymmetric optics. In ASPE proceedings, annual meetings, 1990.

    Google Scholar 

  10. Neo WK, Kumar AS, Rahman M. A novel method for layered tool path generation in the fast tool servo diamond turning of non-circular microstructural surfaces. Proc Inst Mech Eng Part B J Eng Manuf 2013;227(2):210–19.

    Google Scholar 

  11. Ludwick SJ, Chargin DA, Calzaretta JA, Trumper DL. Design of a rotary fast tool servo for ophthalmic lens fabrication. Precis Eng. 1999;23:253–9.

    Article  Google Scholar 

  12. Kim HS, Lee KI, Lee KM, Song BS. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement. Int J Mach Tools Manuf. 2009;49:991–7.

    Article  Google Scholar 

  13. Rakuff S, Cuttino JF. Design and testing of a long-range, precision fast tool servo system for diamond turning. Precis Eng. 2009;33:18–25.

    Article  Google Scholar 

  14. Liu Q, Zhou X, Wang L. A new hybrid macro- and micro-range fast tool servo. In: 2010 International conference on mechanic automation and control engineering (MACE).

    Google Scholar 

  15. Buescher N, Dow TA, Sohn A, Norlund B, Roblee J. Live-axis turning. In: ASPE proceedings, annual meeting, 2004.

    Google Scholar 

  16. Tohme YE, Lowe JA. Machining of freeform optical surfaces by slow slide servo method. In: Proceedings of the ASPE, annual meetings, 2003.

    Google Scholar 

  17. Li L, Yi AY, Huang C, Grewell DA, Benatar A, Chen Y. Fabrication of diffractive optics by use of slow tool servo diamond turning process. Opt Eng. 2006;45(11):113401.

    Article  Google Scholar 

  18. Li L, Yi AY. Development of a 3D artificial compound eye. Opt Express 2010;18(17).

    Google Scholar 

  19. Li LK, Yi AY. Design and fabrication of a freeform microlens array for uniform beam shaping (Technical paper). Microsyst Technol 2011;17:1713–20.

    Google Scholar 

  20. Flucke C, Osmer J, Lünemann B, Riemer O, Brinksmeier E. Scaling in machining of optics with reflective to diffractive function. In: Proceedings of the 9th international Euspen conference. vol. 1, 2009, p. 17–20.

    Google Scholar 

  21. Riemer O. Advances in ultra precision manufacturing. In: International symposium of the Japan Society for Precision Engineering 2011 (ISUPEN 2011).

    Google Scholar 

  22. Neo DWK, Kumar AS, Rahman M. Automated Guilloche machining technique for the fabrication of polygonal Fresnel lens array. Precis Eng. 2015;41:55–62.

    Article  Google Scholar 

  23. Moriya T, Nakamoto K, Ishida T, Takeuchil Y. Creation of V-shaped microgrooves with flat-ends by 6-axis control ultraprecision machining. CIRP Ann Manuf Technol 2010;59:61–66.

    Google Scholar 

  24. Flucke C, Gläbe R, Brinksmeier E. Diamond micro chiseling of large-scale retroreflective arrays. Precis Eng. 2012;36:650–7.

    Article  Google Scholar 

  25. Guilloche, Wikipedia. http://en.wikipedia.org/wiki/Guilloche.

  26. van Renesse RL. Paper based document security-a review, European Conference on Security and Detection (ECOS 97), IEE, London, United Kingdom, 28–30 April 1997, Conference Publication No. 437, doi:10.1049/cp:19970425.

  27. Trueb LF. Gold in watchmaking. Gold Bull. 2000;33(1):11–24. doi:10.1007/BF03215478.

    Article  Google Scholar 

  28. Rose engine lathe, Wikipedia. http://en.wikipedia.org/wiki/Rose_engine_lathe.

  29. Warfield B. Details: essential for successful CNC design, Blog, CNC Projects, Cool, Jan 7 2014. http://blog.cnccookbook.com/2014/01/07/details-essential-for-successful-cnc-design/.

  30. Master Guillocheur. https://www.youtube.com/watch?v=88s98-SHNUU.

  31. Spirograph, Wikipedia. http://en.wikipedia.org/wiki/Spirograph.

  32. Garcia KJ. Non-rational and rational parametric descriptions of the geometric propagation of light in an optical system. Ph.D. Dissertation, The University of Arizona, 1999.

    Google Scholar 

  33. Steinkopf R, Dick L, Kopf T, Gebhardt A, Risse S, Eberhardt R. Data handling and representation of freeform surfaces. Proc SPIE 8169:81690X-2.

    Google Scholar 

  34. DIFFSYS. www.diffsys.com.

  35. NanoCAM 2D/3D. http://www.nanotechsys.com/accessories/nanotech-250upl-additional-accessories/.

  36. Gattamelata D, Pezzuti E, Valentini PP. Using application programming interface to integrate reverse engineering methodologies into SolidWorks. In: XVIII Congreso Internacional de Ingeniería Gráfica de INGEGRAF, 2006.

    Google Scholar 

  37. Thompson KP, Rolland JP. Freeform optical surfaces: a revolution in imaging optical design. Opt Photonics News. 2012;23(6):30–5.

    Article  Google Scholar 

  38. Kong LB, Cheung CF. Modeling and characterization of surface generation in fast tool servo machining of microlens arrays. Comput Ind Eng. 2012;63(4):957–70.

    Article  Google Scholar 

  39. Kwok TC, Cheung CF, Kong LB, To S, Lee WB. Analysis of surface generation in ultra-precision machining with a fast tool servo. Proc IMechE, Part B J Eng Manuf. 2010;224(9):1351–67.

    Article  Google Scholar 

  40. Yu DP, Hong GS, Wong YS. Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf. 2012;52(1):13–23.

    Article  Google Scholar 

  41. Yin ZQ, Dai YF, Li SY, Guan CL, Tie GP. Fabrication of off-axis aspheric surfaces using a slow tool servo. Int J Mach Tools Manuf. 2011;51(5):404–10.

    Article  Google Scholar 

  42. Yu DP, Gan SW, Wong YS, Hong GS, Rahman M, Yao J. Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol. 2012;63(9):85–99.

    Google Scholar 

  43. Scheiding S, Yi AY, Gebhardt A, Li L, Risse S, Eberhardt R, Tünnermann A. Freeform manufacturing of a micro-optical lens array on a steep curved substrate by use of a voice coil fast tool servo. Opt Express. 2011;19(24):23938–51.

    Article  Google Scholar 

  44. Dick L, Risse S, Tünnermann A. Injection molded high precision freeform optics for high volume applications. Adv Opt Technol. 2012;1:39–50.

    Google Scholar 

  45. Zhou M, Zhang HJ, Chen SJ. Study on diamond cutting of nonrationally symmetric microstructured surfaces with fast tool servo. Mater Manuf Proc. 2010;25(6):488–94.

    Article  Google Scholar 

  46. Liu K, Wu H, Liu P, Shaw KC. Ultra-precision machining of aluminium alloy surfaces for optical application. Int J Nanomanuf. 2011;7(2):116–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Wee Keong Neo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Neo, D.W.K. (2017). Literature Review. In: Ultraprecision Machining of Hybrid Freeform Surfaces Using Multiple-Axis Diamond Turning. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4083-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4083-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4082-5

  • Online ISBN: 978-981-10-4083-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics