Skip to main content

How Can Bacteria, as an Eco-Friendly Tool, Contribute to Sustainable Tomato Cultivation?

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

To contribute to the sustainability of tomato production, the use of bacteria capable of promoting plant growth are discussed in this chapter, with a focus on the bacterial modes of action regarding their biofertilizer and phytostimulation abilities. The bacterial effects on tomato plant development stages, from seed to fruit and finally on yield, are also covered. The bacterial abilities for phosphate solubilization, release of phytase, siderophores, ACC deaminase, and plant hormones, are reported. Their effects on seed germination, seedling growth, plant growth in the field, fruit quality, and yield are also characterized. It is concluded that the use of plant growth–promoting bacteria should be an eco-friendly tool that contributes to sustainable tomato cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, de Melo RW, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3(1):1

    Article  Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39(3):423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahirwar NK, Gupta G, Singh V, Rawlley RK, Ramana S (2015) Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): possible role of plant growth promotion. Int J Curr Microbiol App Sci 4(2):720–730

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  PubMed  Google Scholar 

  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N (2012) Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Ann Microbiol 62(2):805–810

    Article  CAS  Google Scholar 

  • Benite AMC, de Machado SP, da Machado BC (2002) Sideroforos: “uma Resposta dos Microorganismos”. Quím nova 25(6/B):1155–1164

    Article  CAS  Google Scholar 

  • Bernabeu PR, Pistorio M, Torres-Tejerizo G, Luna MF (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic 191:113–120

    Article  Google Scholar 

  • Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232(6):1455–1470

    Article  CAS  PubMed  Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis: I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14(1):85–92

    CAS  Google Scholar 

  • García JAL, Probanza A, Ramos B, Palomino M, Maņero FJG (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24(4):169–176

    Article  Google Scholar 

  • Girish N, Umesha S (2005) Effect of plant growth promoting rhizobacteria on bacterial canker of tomato. Arch Phytopathol Plant Protect 38(3):235–243

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    Article  CAS  Google Scholar 

  • Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104(3):815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gül A, Kidoglu F, Tüzel Y (2008) Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum, L.) growing in perlite. Span J Agric Res 6(3):422–429

    Article  Google Scholar 

  • Gutiérrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo R, Talon FM (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26(6):487–491

    Article  CAS  PubMed  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58(1):119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50(6):902–909

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Koh RH, Song HG (2007) Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol 17(11):1805–1810

    CAS  PubMed  Google Scholar 

  • Krebs B, Höding B, Kübart SM, Workie A, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M (1998) Use of Bacillus subtlis as biocontrol agent activities and characterization of Bacillus subtilis strains. J Plant Dis Protect 105:181–197

    Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sansitivity in the Arabidopsis root systems. Plant Physiol 129:244–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner H (ed) (2011) Mineral nutrition of higher plants, 3rd edn. Academic press Elsevier, London

    Google Scholar 

  • Mena-Violante HG, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hortic 113(1):103–106

    Article  CAS  Google Scholar 

  • Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583(2):475–480

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1957) Some aspects of microbial iron metabolism. Bacteriol Rev 21:101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radzki W, Manero FG, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassán FD et al (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25(2):175–185

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25(6):641–649

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myoinositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229(1):47–56

    Article  CAS  Google Scholar 

  • Singh P, Kumar P, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol. doi:10.1155/2014/426483

  • Song OR, Lee SJ, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Szilagyi-Zecchin VJ, Mógor ÁF, Ruaro L, Röder C (2015) Crescimento de mudas de tomateiro (Solanum lycopersicum) estimulado pela bactéria Bacillus amyloliquefaciens subsp. plantarum FZB42 em cultura orgânica. Rev Ciênc Agrar 38(1):26–33

    Google Scholar 

  • Szilagyi-Zecchin VJ, Mógor ÁF, Figueiredo GGO (2016) Strategies for characterization of agriculturally important bacteria. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 1–21

    Google Scholar 

  • Taiz L, Zeiger E (eds) (2013) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Thomas P, Upreti R (2015) Evaluation of tomato seedling root-associated bacterial endophytes towards organic seedling production. Org Agric 6(2):89–98

    Article  Google Scholar 

  • Turan M, Ataoglu N, Sahin F (2007) Effects of Bacillus FS-3 on growth of tomato (Lycopersicon esculentum L.) plants and availability of phosphorus in soil. Plant Soil Environ 53(2):58

    CAS  Google Scholar 

  • Valenciano J. De Pablo, Uribe TJ (2015) Control system of management for intensive cultivation activity in tomato production: Spanish case. J Agric Sci Technol 17(1): 11021

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fepyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20(4):441–447

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growthpromoting rhizobacterium Pseudomonas putida GR122 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Jaskiw Szilagyi Zecchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zecchin, V.J.S., Mógor, Á.F. (2017). How Can Bacteria, as an Eco-Friendly Tool, Contribute to Sustainable Tomato Cultivation?. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_8

Download citation

Publish with us

Policies and ethics