Skip to main content

Rhizobacterial Biofilms: Diversity and Role in Plant Health

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

The diverse nature of rhizobacteria and their interaction with plant roots involves complex processes and provides a unique microbial niche in the rhizosphere both beneficial and harmful to plant health depending on nature of bacteria. Biofilms are defined as the bacterial populations which stick to living and nonliving surfaces and encased in a self-produced extracellular polymeric substances (EPS). Both disease-causing and beneficial plant growth-encouraging bacteria may form biofilm on abiotic and biotic surfaces including plant surface and in soil. It is now well known that a microbe under natural condition forms mixed/polymicrobial biofilm. The process of biofilm development and their regulation are well studied among human pathogenic bacteria such as Pseudomonas aeruginosa. However, recent investigations indicated an increased interest in the research on biofilm on plant-associated rhizobacteria such as Azotobacter, Acinetobacter, Bacillus, Burkholderia, Klebsiella, Pantoea, Pseudomonas and Rhizobium. In this chapter we have made an attempt to review recent studies on rhizobacterial biofilms and their possible impact on plant health under natural and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    Article  PubMed  Google Scholar 

  • Ahmad I, Khan MSA (2012) Microscopy in mycological research with especial reference to ultrastructures and biofilm studies. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Badajoz, pp 646–659

    Google Scholar 

  • Ahmad I, Aqil F, Ahmad F, Zahin M, Musarrat J (2008) Quorum sensing in bacteria: potential in plant health protection. In: Ahmad I, Hayat S, Pichtel J (eds) Plant-bacteria interactions. Wiley, Weinheim, pp 129–153

    Chapter  Google Scholar 

  • Allan-Wojtas P, Hildebrand PD, Braun PG, Smith-King HL, Carbyn S, Renderos WE (2010) Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves. J Microsc 239:249–258

    Article  CAS  PubMed  Google Scholar 

  • Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6(3):e14786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altaf MM, Ahmad I (2016) Plant growth promoting activities, biofilm formation and root colonization by Bacillus sp. isolated from rhizospheric soils. J Pure Appl Microbio10:109–120

    Google Scholar 

  • Angus AA, Hirsch AM (2013) Biofilm formation in the rhizosphere: multispecies interactions and implications for plant growth. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 703–712

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Garica-Villaraco A, Gutierrez Manero FJ (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interaction, strategies and techniques to promote plant growth. Wiley, Weinheim, pp 1–13

    Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–E1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens S, Kappler A, Obst M (2012) Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ Microbiol 14:2851–2869

    Article  CAS  PubMed  Google Scholar 

  • Bogino P, Abod A, Nievas F, Giordano W (2013) Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS One 8(11):e79614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Buchholz F, Wolf A, Lerchner J, Mertens F, Harms H, Maskow T (2010) Fast and reliable evaluation of bactericidal and bacteriostatic treatment of biofilms using chip calorimetry. Antimicrob Agents Chemother 54(1):312–319

    Article  CAS  PubMed  Google Scholar 

  • Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T (2007) A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods 68(3):605–612

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo J, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell D, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol gents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Craveiro S, Alves-Barroco C, Barreto Crespo MT, Salvador Barreto A, Semedo-Lemsaddek T (2015) Aeromonas biofilm on stainless steel: efficiency of commonly used disinfectants. Int Food Sci Technol 50:851–856

    Google Scholar 

  • Crémet L, Corvec S, Batard E, Auger M, Lopez I, Pagniez F, Dauvergne S, Caroff N (2013) Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli. Diagn Microbiol Infect Dis 75:252–255

    Article  PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The Rhizosphere, Advanced series in agricultural sciences, vol 15. Springer, New York

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Dietel K, Beator B, Budiharjo A, Fan B, Borriss R (2013) Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol J 29:59–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Signo KSL, Vanderlinde EM, Yost CK, Dahms TES (2011) Atomic force microscopy of a ctpA mutant in Rhizobium leguminosarum reveals surface defects linking CtpA function to biofilm formation. Microbiology 157:3049–3058

    Article  CAS  PubMed  Google Scholar 

  • Dynes JJ, Tyliszczak T, Araki T, Lawrence JR, Swerhone GDW (2006) Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acylhomoserine lactone production is more common among plant associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36(5):990–1004

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148(2):341–343

    Article  CAS  PubMed  Google Scholar 

  • Fan B, Cravalhais LC, Becker A, Fedoseyenko D, Von Wiren N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 12:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima Q, Zahin M, Khan MSA, Ahmad I (2010) Modulation of quorum sensing controlled behavior of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Freeman J, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42:872–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuente LDL, Parker JK, Oliver JE, Granger S, Brannen PM, Santen EV, Cobine PA (2013) The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection. PLoS One 8(5):e62945

    Article  CAS  Google Scholar 

  • Fujishige NA, Kapadia NN, Hirsch AM (2006) A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc 150:79–88

    Article  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736

    Article  CAS  PubMed  Google Scholar 

  • Gorman SP, Adair CG, Mawhinney WM (1994) Incidence and nature of peritoneal catheter biofilm determined by electron and confocal laser scanning microscopy. Epidemiol Infect 112:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes BG, Barbosa RL, Soprano AS, Campos BM, De Souza TA, Tonoli CC, Leme AF, Murakami MT, Benedetti CE (2011) Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem 286:26148–26157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104(4):961–969

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295

    Article  CAS  PubMed  Google Scholar 

  • Ivanova AA, Vetrova AA, Filonov AE, Boronin AM (2015) Oil biodegradation by microbial-plant associations. Appl Biochem Microbiol 51(2):196–201

    Article  CAS  Google Scholar 

  • Janczarek M, RachwaÅ‚ K, CieÅ›la J, Ginalska G, Bieganowski A (2015) Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant Soil 388:211–227

    Article  CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Gao H, Lu B, Kong B, Mu Z (2010) Colonization of Morus alba L. by the plant-growth-promoting and antagonist bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 10:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil- root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kaiser TDL, Pereira EM, Dos Santos KRN, Maciel ELN, Schuenck RP, Nunes APF (2013) Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 75:235–239

    Article  CAS  PubMed  Google Scholar 

  • Karcz J, Bernas T, Nowak A, Talik E, Woznica A (2012) Application of lyophilization to prepare the nitrifying bacterial biofilm for imaging with scanning electron microscopy. Scanning 34:26–36

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysciak D, Schmeisser C, Preusß S, Riethausen J, Quitschau M, Grond S, Streit WR (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77:5089–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J 72:694–706

    Article  CAS  PubMed  Google Scholar 

  • Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA (2014) Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 8:894–907

    Article  CAS  PubMed  Google Scholar 

  • Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for extremophilic archaea and environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Liu Y, Wang H, Sun X, Yang H, Wang Y, Song W (2011) Study on mechanisms of colonization of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol 62(4):1113–1122

    Article  CAS  PubMed  Google Scholar 

  • López D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74(3):609–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2:a000398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lugtenberg B (2015) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer, Gewerbestrasse

    Book  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • MiloÅ¡ević NA, Marinković JB, Tintor BB (2012) Mitigating abiotic stress in crop plants by microorganisms. Proc Natl Sci Matica Srpska Novi Sad 123:17–26

    Article  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  CAS  PubMed  Google Scholar 

  • Morel MA, Ubalde MC, Olivera-Bravo S, Callejas C, Gill PR, Castro-Sowinski S (2009) Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol Lett 291(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Nakamura Y, Yamazaki G, Ishida A, Kato N, Ikeda T (2007) The plant pathogen Pantoea ananatis produces N-Acylhomoserinelactone and causes center rot disease of onion by quorum sensing. J Bacteriol 189(22):8333–8338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2014) Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: a micrographical and molecular approach. J Microsc Ultrastruct 2:34–40

    Article  Google Scholar 

  • Nweze EI, Ghannoum A, Chandra J, Ghannoum MA, Mukherjee PK (2012) Development of a 96-well catheter-based microdilution method to test antifungal susceptibility of Candida biofilms. J Antimicrob Chemother 67:149–153

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantanella F, Valenti P, Frioni A, Natalizi T, Coltella L, Berlutti F (2008) BioTimer assay, a new method for counting Staphylococcus spp. in biofilm without sample manipulation applied to evaluate antibiotic susceptibility of biofilm. J Microbiol Methods 75(3):478–484

    Article  CAS  PubMed  Google Scholar 

  • Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25:31–42

    CAS  PubMed  Google Scholar 

  • Pastorella G, Gazzola G, Guadarrama S, Marsili E (2012) Biofilms: applications in bioremediation. In: Lear G, Lewis GD (eds) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk, pp 73–98

    Google Scholar 

  • Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC (2013) Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother 57:74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Molina M, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Factories 11:125

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg ME, Schellmann D, Brunhofer G, Erker T, Busygin I, Leino R, Vuorela PM, Fallarero A (2009) Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J Microbiol Methods 78:104–106

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fert Soils 46:17–26

    Article  CAS  Google Scholar 

  • Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303

    Article  PubMed  Google Scholar 

  • Shelud’ko AV, Shirokov AA, Sokolova MK, Sokolov OI, Petrova LP, Matora LY, Katsy EI (2010) Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology 9(5):688–695

    Article  CAS  Google Scholar 

  • Sun S, Wang J, Zhu L, Liao D, Gu M, Ren L, Kapulnik Y, Xu G (2012) An active factor from tomato root exudates plays an important role in efficient establishment of mycorrhizal symbiosis. PLoS One 7(8):e43385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L (2013) Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4(5):400–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C (2013) Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 17(3):841–850

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13(6):637–648

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6(3):e17968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Timmusk K, Behers L (2013) Rhizobacterial plant drought stress tolerance enhancement. J Food Security 1:10–16

    Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toté K, Vanden Berghe D, Maes L, Cos P (2008) A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 46:249–254

    Article  PubMed  Google Scholar 

  • Trivedi P, Spann TM, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol 62(2):324–336

    Article  CAS  PubMed  Google Scholar 

  • Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton ZVR, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H, Kannenberg EL, Russell W, Carlson RW, Yost CK (2009) Rhizobium leguminosarum biovar viciae 3841,deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155:3055–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 3:157–168

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and release of GMOs. VCH, New York, pp 1–18

    Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  • Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32:134–149

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Thompson A, Kashleva H, Dongari-Bagtzoglou A (2011) A quantitative real-time RT-PCR assay for mature C. albicans biofilms. BMC Microbiol 11:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasmin S, Hafeez FY, Rasul G (2014) Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Biocontrol Sci Tech 24(11):1227–1242

    Article  Google Scholar 

  • Yuanqing C, Tong Z (2012) Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem 404:1465–1475

    Article  CAS  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

  • Zimaro T, Thomas L, Marondedze C, Sgro GG, Garofalo CG, Ficarra FA, Gehring C, Ottado J, Gottig N (2014) The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiol 14:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Musheer Altaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Altaf, M.M., Ahmad, I., Al-Thubiani, A.S. (2017). Rhizobacterial Biofilms: Diversity and Role in Plant Health. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_7

Download citation

Publish with us

Policies and ethics