Skip to main content

Biosynthesis of Nanoparticles by Microorganisms and Their Significance in Sustainable Agriculture

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

An assuring novel technique in the field of micro-biotechnology is the application of potential microbes for producing inorganic nanoparticles. These biological agents are safe, eco-friendly, and good source of producing green nanoparticles. Since large species of microbial agents with different metabolic complexities have potential of producing metal nanoparticles (NPs), the exact means or procedure of nanoparticle synthesis is not well understood. The interest in the nanotechnology field is triggered by exclusive assets of nanoparticles and their possible and probable fields of application including electronics, medication, and agriculture. With the ever enhancement in global populace and demand for food, the nanotechnology technique may be the most hopeful and reassuring way to improve the overall agricultural production. The potential applications of nanoparticles in agriculture sector include biosensors; gradual, time-consuming, and controlled delivery of chemical fertilizers and pesticides; detection and control of plant diseases; soil and water remediation; etc. At present however the use and employment of nanotechnology in the agricultural field is in the infant stage; however, if discovered gradually and used in a sustainable way, this new technology can help in the orientation of our agriculture and society today to new heights in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3:43–55

    Google Scholar 

  • Ahmad A, Khan MI, Senapati S, Kumar R, Sastry M (2003) Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan I, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389

    Article  CAS  PubMed  Google Scholar 

  • Anonymous N (2009) Nanotechnology and nanoscience applications: revolution in India and beyond. Strateg Appl Integr Nano Sci

    Google Scholar 

  • Bai H, Zhang Z, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M, Mater J (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater 15:2583–2589

    CAS  Google Scholar 

  • Baskar G, Chandhuru J, Fahad SK, Praveen AS (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Pharm Tech 3:142–146

    Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Chandrasekar R, Chandra AK, Epidi TT, Prakasham RS (2014) Application of nanoparticles in sustainable agriculture: its current status. Short views on insect. Biochem Mol Biol 2:429–448

    Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discoveries 2:21–36

    Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  CAS  PubMed  Google Scholar 

  • Brecht M, Datnoff L, Nagata R, Kucharek T ( 2003) The role of silicon in suppressing tray leaf spot development in St. Augustine grass. Publication in University of Florida, University Report, 1–4

    Google Scholar 

  • Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different species. Z Naturforsch 57c:634–639

    Google Scholar 

  • Changa YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci 283:446–456

    Article  CAS  Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman S et al (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnamuthu CR, Kokiladevi E (2007) Weed management through nanoherbicides. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Application of nanotechnology in agriculture. Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Factories 12:75

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012) Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano 6:6165–6173

    Article  CAS  PubMed  Google Scholar 

  • Deplanche K, Macaskie LE (2008) Biorecovery of gold by E. coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Drexler E (2009) There’s plenty of room at the bottom (Richard Feynman, Pasadena, 29 December 1959). Metamodern, The Trajectory of Technol 12:29

    Google Scholar 

  • Duran N, Marcato PD, Alves OL, DSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Article  Google Scholar 

  • Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59:81–89

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2:243

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Article  CAS  Google Scholar 

  • Garver TLW, Thomas BJ, Robbins MP, Zeyen RJ (1998) Phenylalanine ammonia-lyase inhibition, auto fluorescence, and localized accumulation of silicon, calcium and manganese in oat epidermis attacked by the powdery mildew fungus Blumeria graminis (DC) speer. Physiol Mol Plant Pathol 52:223–243

    Article  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometal 83:132

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M et al (2001) Pepsin–gold colloid conjugates: preparation, characterization and enzymatic activity. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Govindraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mat Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off. J Contam Hydrol 118:165–183

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnstone BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish: a mechanistic analysis. Ecotoxico 17:396–409

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Herrmann JM, Guillard C (2000) Photocatalytic degradation of pesticides in agricultural used waters. Surface Chem Cat 23:417

    Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticle using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Cur Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepaka V, Pandiana SR, Kottaisamy M, ManiKantha BS, Kartikeyana B, Gurunathana S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Coll Surf B Bioint 77:257–262

    Article  CAS  Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:33

    Article  CAS  Google Scholar 

  • Khan MM, Kalathil S, Han TH, Lee J, Cho MH (2013) Positively charged gold nanoparticles synthesized by electrochemically active biofilm-a biogenic approach. Nanosci Nanotechnol 13:6079–6085

    Article  CAS  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55

    Article  CAS  Google Scholar 

  • Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Microbial preparation of gold nanoparticles by anaerobic bacterium. J Trans Mater Res Soc Jpn 29:2341

    CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. Casei J Chemi Technol Biotechnol 87:932–937

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Krumov N, Nochta IP, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035

    Article  CAS  Google Scholar 

  • Kumar GC, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B: Biointerfaces 84:462–466

    Article  CAS  PubMed  Google Scholar 

  • Lengke M, Ravel B, Feet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cynobacteria from gold (III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Lhomme L, Brossilon S, Woolbert D (2007) Photocatalytic degradation of a triazole pesticide, cyproconazole, in water. J Photochem Photobiol 188:34–42

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomaterials. doi:10.1155/2011/270974

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  CAS  PubMed  Google Scholar 

  • Lü QF, Huang MR, Li XG (2007) Synthesis and heavy metal ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability. Chem Eur J 13:6009–6018

    Article  PubMed  CAS  Google Scholar 

  • Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22:155–160

    Article  CAS  Google Scholar 

  • Lyons K (2010) Nanotechnology: transforming food and the environment. Food First Backgrounder 16:1–4

    Google Scholar 

  • Ma Y, Kuang L, HeX BW, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143:240–245

    Article  CAS  PubMed  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha GDG, Annadurai G (2013) Bactericidal activity of biomediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invention Today 5:119–125

    Article  CAS  Google Scholar 

  • Malato A, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B-Environ 37:1–15

    Article  CAS  Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ita J Agro 37:274–282

    Google Scholar 

  • Martinson CA, Reddy KJ (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interf Sci 336:406–411

    Article  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Mercier L, Pinnavaia TJ (1997) Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. Adv Mater 9:500–503

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Ab di K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mat Res Bull 44:1415–1421

    Article  CAS  Google Scholar 

  • Mueller N, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400

    Article  CAS  Google Scholar 

  • Mühlfeld C, Gehr P, Rothen-Rutishauser B (2008) Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138:387–391

    PubMed  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Greppi GF, Roggio A, Malfatti L, Innocenzi P (2011) Polypeptide binding to mesostructured titania films. Microporous Mesoporous Mat 142:1–6

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth Design 2:293–298

    Article  CAS  Google Scholar 

  • Nasreen I, Hulkoti TC, Taranath TC (2014) Biosynthesis of nanoparticles using microbes: a review. Colloids Surf B: Biointerfaces 121:474–483

    Article  CAS  Google Scholar 

  • OECD and Allianz (2008) Sizes that matter: opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme. http://www.oecd.org/dataoecd/32/1/44108334.pdf

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977–9984

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DK, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Coll Interf Sci 342:68–72

    Article  CAS  Google Scholar 

  • Prevot AB, Fabbri D, Pramauro E, Rubio AM, de la Guardia M (2001) Continuous monitoring of photocatalytic treatments by flow injection. Degradation of dicamba in aqueous TiO2 dispersions. Chemosphere 44:249–255

    Article  Google Scholar 

  • Pum D, Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8–12

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotech 28:277–284

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Applied mycology, 1st edn. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomat Nanobiotechnol 3:15–324

    Article  CAS  Google Scholar 

  • Rai M, Ingle AP, Gupta IR, Birla SS, Yadav AP, Kamel A (2013) Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr Nanosci 9:576–587

    Article  CAS  Google Scholar 

  • Rajasree SR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:796–799

    Article  CAS  Google Scholar 

  • Ramezani H, Holm S, Allard A, Ståhl G (2010) Monitoring landscape metrics by point sampling: accuracy in estimating Shannon’s diversity and edge density. Environ Monit Assess 164:403–421

    Article  CAS  PubMed  Google Scholar 

  • Sanghi R, Verma PA (2009) Facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete Chrysosporium. J Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB et al (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20:7825–7836

    Article  CAS  PubMed  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar MV, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V (2004) Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solution. J Chem Technol Biot 79:1279–1285

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nat 452:301–310

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sharma N, Pinnaka AK, Raje MA, Fnu Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86

    Article  CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Shiying H, Zhirui G, Yu Z, Song Z, Jing W, Ning G (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987. doi:10.1016/j.matlet.2007.01.018

    Article  CAS  Google Scholar 

  • Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem Eur J 13:3160–3168

    Article  CAS  PubMed  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, San Diego

    Google Scholar 

  • Slocik JM, Knecht MR, Wright DW (2004) Biogenic nanoparticles. In: Nalwa HS (ed) The encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, pp 293–308

    Google Scholar 

  • Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sweeney RY, Mao CX, Gao JL, Burt AM, Belcher G, Georgiou BL, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Boil 11:1553

    Article  CAS  Google Scholar 

  • Tarafdar JC (2012) Perspectives of nanotechnological applications for crop production. NAAS News 12:8–11

    Google Scholar 

  • Tarafdar JC, Raliya R, Rathor I (2012) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tayade RJ, Kulkarni RG, Jasra RV (2006) Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45:5231–5238

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed 6:257–262

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655

    CAS  Google Scholar 

  • Tsibakhashvili N, Kalabegishvili T, Gabunia V, Gintury E, Kuchava N, Bagdavadze N, Pataraya D, Gurielidzse M, Gvarjaladze D, Lomidze L (2010) Synthesis of silver nanoparticles using bacteria. Nano Studies 2:179–182

    Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LV (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Coll Surf B Biointerg 53:55–59

    Article  CAS  Google Scholar 

  • Waghmare SS, Deshmukh AM, Kulkarni SW, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64

    CAS  Google Scholar 

  • Xiaorong Z, Xiaoxiao H, Kemin W, Xiaohai Y (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotech 7:245–254

    Article  CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Ma Y, Jeong U, Xia Y (2010) Au(I): an alternative and potentially better precursor than Au(III) for the synthesis of Au nanostructures. J Mater Chem 20:2290–2301

    Article  CAS  Google Scholar 

  • Zhan J (2009) Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environ Sci Technol 43:8616–8621

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Li G, Yu JC (2010) Inorganic materials for photocatalytic water disinfection. J Mater Chem 20:4529–4536

    Article  CAS  Google Scholar 

  • Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave-assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chaudhary, D., Kumar, R., Kumari, A., Rashmi, Jangra, R. (2017). Biosynthesis of Nanoparticles by Microorganisms and Their Significance in Sustainable Agriculture. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_5

Download citation

Publish with us

Policies and ethics