Skip to main content

Phosphate-Solubilizing Microorganisms in Sustainable Production of Wheat: Current Perspective

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

In terms of global production, wheat among cereals ranks third after rice and maize, contributing about 35% of the total food grain production. Wheat due to high nutritional value is considered one of the important dietary constituents and, hence, has become one of the better food choices around the world. For growth and development, wheat requires large amounts of major plant nutrients especially phosphorus (P). Application of sufficient amounts of P has many beneficial impacts on wheat including its role in growth, grain formation, and development, and in straw yield. Phosphorus deficiency, however, may adversely affect the growth and, therefore, hampers the physiological processes leading eventually to overall stunting of the plant. In order to circumvent the phosphorus problems and hence to achieve optimum yields, wheat growers usually apply excessive amounts of chemical phosphatic fertilizer which is both expensive and destructive to soil fertility. To overcome these problems, a physiologically versatile array of microorganisms especially belonging to phosphate-solubilizing group has been introduced into the agricultural system for improving wheat production. The P-solubilizing microorganisms (PSM) solubilize unavailable soil P and make it available for uptake by plants. The use of microbial phosphatic fertilizer (microphos) in wheat production system is considered an eco-friendly strategy without adversely affecting the soil health. Despite numerous informations available on the impact of P-solubilizing microorganisms on various plants, literature suggesting the use of PSM in wheat production is limited. Realizing the importance of PSM in enhancing the overall performance of wheat, attempt has been made to better understand as to how the PSM affects wheat production in variable agricultural practices. Also, efforts will be made to find PSM which could be applied to facilitate the growth and development of wheat grown in different agroecological niches. Constant and sustainable application of PSM is expected to decrease the use of fertilizers in wheat production strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Abbasniayzare SK, Sedaghathoor S, Dahkaei MNP (2012) Effect of biofertilizer application on growth parameters of Spathiphyllum illusion. Am Eurasian J Agric Environ Sci 12:669–673

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Afzal A, Asghari B (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Afzal A, Ashraf M, Asad SA, Farooq M (2005) Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int J Agric Biol 7:207–209

    Google Scholar 

  • Agrawal S, Pathak RK (2010) Response of phosphate solubilizing microorganism on quality of wheat (Triticum aestivum L.) plant grown conventionally in temperate climate. J Biofertil Biopestici 2:2

    Google Scholar 

  • Agrawal DPK, Agrawal S (2013) Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int J Curr Microbiol App Sci 2:406–417

    Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86(9):945–950

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Tahir M, Rashid H, Ajmal B, Sajjad RN, Adeel A (2014) Investigation of biofertilizers influence on vegetative growth, flower quality, bulb yield and nutrient uptake in gladiolus (Gladiolus grandiflorus L.) Intern J Plant Anim Environ Sci 4:94–99

    CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.) World J Microbiol Biotechnol 25:519–526

    Google Scholar 

  • Amara U, Wang YX, Cui XL, Khalid R, Ali S, Shabbir G, Hayat R (2015) Screening and identification of soil bacteria for growth promotion of wheat (Triticum aestivum L.) J Bio Env Sci 7(3):87–99

    Google Scholar 

  • Amraei B, Ardakani MR, Rafiei M, Paknejad F, Rejali F (2015) Effect of Mycorrhiza and Azotobacter on concentration of macroelements and root colonization percentage in different cultivars of wheat (Triticum aestivum L). Biol Forum An Int J 7:895–900

    Google Scholar 

  • Anonymous (1988) Better crops with plant food. PPI, Atlanta, pp 26

    Google Scholar 

  • Arcand MM, Schneider KD (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78:791–807

    Article  CAS  PubMed  Google Scholar 

  • Babana AH, Antoun H, Dicko AH, Maïga K, Traoré D (2012) Effect of Pseudomonas sp. on wheat roots colonization by mycorrhizal fungi and phosphate-solubilizing microorganisms, wheat growth and P-uptake. Int J Microbiol 1(1):1–7

    Google Scholar 

  • Babana AH, Dicko AH, Maïga K, Traoré D (2013) Characterization of rock phosphate-solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali. J Microbiol Res 1(1):1–6

    Google Scholar 

  • Babana AH, Kassogué A, Dicko AH, Maîga K, Samaké F, Traoré D, Fané R, Faradji FA (2016) Development of a biological phosphate fertilizer to improve wheat (Triticum aestivum L.) production in Mali. Procedia Eng 138:319–324

    Article  CAS  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic 32P and 15N-dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Basharat N, Sobita S, Vijay SR (2011) Effect of Pseudomonas fluorescens on Fusarium oxysporum f. sp. gladioli causing cormrot disease of gladiolus. J Plant Dis Sci 6:51–53

    Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in mangrove- a review. Biocatal Agric Biotechnol 3(2):97–110

    Google Scholar 

  • Billah M, Bano A (2015) Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat. Waste Mgmt Res 33:63–72

    Article  CAS  Google Scholar 

  • Bulut S (2013) Evaluation of yield and quality parameters of phosphorous-solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.) Turk J Agric For 37:545–554

    Article  CAS  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci RS, Ahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Chaitra R, Patil VS (2007) Integrated nutrient management studies in China aster (Callistephus chinensis Nees) cv. Kamini Karnataka. J Agric Sci 20:689–690

    Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006a) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen BD, Zhu YG, Smith FA (2006b) Effect of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from uranium mining impacted soil. Chemosphere 62:1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Chitraselvi RPE, Kalidass S, Kant R (2015) Efficiency of rhizosphere bacteria in production of indole acetic acid, siderophore and phosphate solubilization. Int J Chem Tech Res 7(6):2557–2564

    CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Pl Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho FP, Felix WP, Yano-Melo AM (2012) Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecol Eng 42:85–89

    Article  Google Scholar 

  • Dalve PD, Mane SV, Nimbalkar RR (2009) Effect of biofertilizers on growth, flowering and yield of gladiolus. Asian J Hortic 4:227–229

    Google Scholar 

  • Datta C, Basu P (2000) Lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401

    Article  PubMed  Google Scholar 

  • Dwivedi BS, Singh VK, Dwivedi V (2004) Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the indo–Gangetic Plains of India. Austr J Exptl Agric 44:1041–1050

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Eman AA, Monem AE, Saleh MMS, Mostafa EAM (2008) Minimizing the quantity of mineral nitrogen fertilization grapevine by using humic acid organic and biofertilizers. Res J Agric Sci 4:46–50

    Google Scholar 

  • Frank O, Julius O (2012) Some characteristics of a plant growth promoting Enterobacter sp. isolated from the roots of maize. Adv Microbiol 2:368–374

    Article  CAS  Google Scholar 

  • Gaiero JR, Mc Call CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Amer J Bot 100:1738–1750

    Article  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goes KCGPD, Cattelan AJ, De Carvalho CGP (2012) Biochemical and molecular characterization of high population density bacteria isolated from sunflower. J Microbiol Biotechnol 22:437–447

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial mineral phosphate solubilization: historical perspective and future prospects. Am J Alternat Agric 1:57–65

    Article  Google Scholar 

  • Griffith DB (2009) Efficient fertilizer use – phosphorus. Sci Agric 433:23–67

    Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    Article  CAS  PubMed  Google Scholar 

  • Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40(3):510–517

    Article  Google Scholar 

  • Haque MA, Sattar MA, Islam MR, Hashem MA, Khan MK (2013) Performance of phosphate solubilizing bacteria with various phosphorus levels on wheat in pot culture. J Environ Sci Nat Res 6:221–226

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186:37–34

    Article  CAS  Google Scholar 

  • Hossain MA, Begum S, Rahman AKMM, Arabinda S, Salahuddin ABM (1996) Growth analysis of mustard and rapeseed in relation to grain filling period and yield potential. J Agric Res 34:59–369

    Google Scholar 

  • Hossain MB, Sattar MA (2014) Effect of inorganic phosphorus fertilizer and inoculants on yield and phosphorus use efficiency of wheat. J Environ Sci Natural Res 7:75–79

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Islam MT, Hossain MM (2012) Plant probiotics in phosphorus nutrition in crops, with special reference to Rice. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 325–363

    Chapter  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2014) Characterization of root-associated bacteria from paddy and its growth promotion efficacy. 3 Biotech 4:325–330

    Article  PubMed  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiol 160:778–788

    Article  CAS  Google Scholar 

  • Joo HS, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4. J Biosci Bioeng 100:184–191

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj 1212 regulates endogenous plant carbohydrates and amino acid contents to promote mustard plant growth. Indian J Microbiol 54:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795

    Article  CAS  Google Scholar 

  • Kaur G, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25:428–437

    Article  Google Scholar 

  • Kenasa G, Jida M, Assefa F (2014) Characterization of phosphate solubilizing faba bean (Vicia faba L.) nodulating rhizobia isolated from acidic soils of Wollega, Ethiopia. Sci Technol Arts Res J 3:11–17

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. AgronSustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate solubilizing microorganisms. In: Phosphate solubilising microorganisms: principles and application of microphos technology. Springer, Switzerland; p 31–62

    Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014a) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.) Biocatal Agric Biotechnol 3:121–128

    Google Scholar 

  • Kumar A, Shukla UK, Singh A, Poonam AK, Prasad S, Singh SK, Kumar D (2014) Evaluation of Pseudomonas isolates from wheat for some important plant growth promoting traits. Afr J Microbiol Res 8:2604–2608

    Article  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2015) Characterization of bacterial strains and their impact on plant growth promotion and yield of wheat and microbial populations of soil. Afr J Agri Res 10:1367–1375

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28(3):301–305

    Article  CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kundu BS, Nehra K, Yadav R, Tomar M (2009) Biodiversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. Indian J Microbiol 49:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Last FT (1955) Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38:221–239

    Article  Google Scholar 

  • Lavania M, Nautiyal CS (2013) Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7:4403–4413

    Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6):e0130081. doi:10.1371/journal.pone.0130081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsay WL, Vlek PLG, Chien SH (1989) Phosphate minerals. In: Dixon JB, Weed SB, (eds) Soil environment, 2nd ed. Soil Science Society of America, Madison, pp 1089–1130

    Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Magnucka EG, Pietr SJ (2015) Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiol Res 181:112–119

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:1–10

    Article  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Mardad I, Serrano A, Soukri A (2013) Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. Afr J Microbiol Res 7:626–635

    CAS  Google Scholar 

  • Marra LM, Longatti SMO, Soares CRFS, Lima JM, Olivares FL, Moreira FMS (2015) Initial pH of medium affects organic acid production but do not affect phosphate solubilization. Braz J Microbiol 46:367–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Mbai FN, Magiri EN, Matiru VN, Nganga J, Nyambati VCS (2013) Isolation and characterisation of bacterial root endophytes with potential to enhance plant growth from kenyan basmati rice. Amer Intern J Contem Res 3:25–40

    Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Mihalache G, Zamfirache MM, Mihasan M, Ivanov I, Stefan M, Raus L (2015) Phosphate solubilizing bacteria associated with runner bean rhizosphere. Arch Biol Sci 67:793–800

    Article  Google Scholar 

  • Minaxi SJ, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Pl Nutr 13:511–525

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant pseudomonads from NW Himalayas. Arch Microbiol 193:497–513

    Article  CAS  PubMed  Google Scholar 

  • Moreira FS, Costa PB, Rd S, Beneduzi A, Lisboa BB, Vargas LK, Passaglia LM (2016) Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivumL.) crops. Genet Mol Biol 39:111–121

    Article  PubMed Central  Google Scholar 

  • Mujahid TY, Siddiqui K, Ahmed R, Kazmi SU, Ahmed N (2014) Isolation and partial characterization of phosphate solubilizing bacteria isolated from soil and marine samples. Pak J Pharm Sci 27:1483–1490

    PubMed  Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2:606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naqvi SDY, Ahmad S (2012) Effect of Pseudomonas fluorescens on Fusarium oxysporum f.sp. gladioli causing corm rot disease of gladiolus. J Stored Prod Postharvest Res 3:49–51

    Google Scholar 

  • Naresh R, Tomar S, Purushottam S, Kumar D, Pratap B, Kumar V, Nanher A (2014) Testing and evaluation of planting methods on wheat grain yield and yield contributing parameters in irrigated agro-ecosystem of western Uttar Pradesh, India. Afr J Agric Res 9:176–182

    Article  Google Scholar 

  • Narula N, Kumar V, Behl RK (2005) Effect of phosphate solubilizing strains of Azotobacter chroococcum on yield traits and their survival in the rhizosphere of wheat genotypes under field conditions. Acta Agronomica Hungarica 49:141–149

    Article  Google Scholar 

  • Nath R, Sharma GD, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different Endophytic Penicillium sp. isolated from tea (Camellia sinensis L.) Eur J Exp Biol 2:1354–1358

    CAS  Google Scholar 

  • Norrish K, Rosser H (1983) Mineral phosphate soils: an Australianviewpoint. Sponsored by the Division of Soils, Commonwealth Scientific and Industrial Research Organization. Academic Press/CSIRO, Melbourne /London . pp 335–361

    Google Scholar 

  • Ogut M, Er F (2016) Mineral composition of field grown winter wheat inoculated with phosphorus solubilizing bacteria at different plant growth stages. J Plant Nutr 39:479–490

    Article  CAS  Google Scholar 

  • Ogut M, Er F, Neumann G (2011) Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganims. Plant Soil 339:285–297

    Article  CAS  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46:707–715

    Article  CAS  Google Scholar 

  • Onyia CE, Anyanwu CU (2013) Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil. J Yeast Fungal Res 4:52–57

    CAS  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. doi:10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Padmavathi T (2015) Optimization of phosphate solubilization by Aspergillus niger using plackett-burman and response surface methodology. J Soil Sci Pl Nutr 15(3):781–793

    CAS  Google Scholar 

  • Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR (2014) Biochemical and molecular characterization of potential phosphate solubilizing bacteria in acid sulphate soils and their beneficial effects on rice growth. PLoS One 9 : PMC4186749; e97241

    Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol Biotechnol 5:183–189

    CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Priya S, Panneerselvam T, Sivakumar T (2013) Evaluation of indole-3-acetic acid in phosphate solubilizing microbes isolated from rhizosphere soil. Int J Curr Microbiol App Sci 2:29–36

    Google Scholar 

  • Promwee A, Issarakraisila M, Intana W, Chamswarng C, Yenjit P (2014) Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J Agric Sci 6:8. doi:10.5539/jas.v6n9p8

    Google Scholar 

  • Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216

    Article  CAS  Google Scholar 

  • Qiao ZW, Hong JP, Xie YH, Li LX (2013) Screening, identification and phosphate-solubilizing characteristics of Rahnella sp. phosphate-solubilizing bacteria in calcareous soil. Ying Yong Sheng Tai Xue Bao 24:2294–2300

    CAS  PubMed  Google Scholar 

  • Raja AK, Shah KH, Aslam M, Memon MY (2002) Response of phosphobacterial and mycorrhizal inoculation in wheat. Asian J Plant Sc 1:322–323

    Article  Google Scholar 

  • Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Ram H, Malik SS, Dhaliwal SS, Kumar B, Singh Y (2015) Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant Soil Environ 61:122–126

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agri Res 3:53–66

    Article  CAS  Google Scholar 

  • Ramlakshmi R, Bharathiraja S (2015) AM fungi and phosphate solubilizing bacteria (Paenibacillus polymyxa) as a potential bioinoculant for marigold. Intern J Curr Res 7:12264–12266

    CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Ranjan A, Mahalakshmi M, Sridevi M (2013) Isolation and characterization of phosphate solubilizing bacterial species from different crop fields of Salem, Tamil Nadu, India. Intern J Nutr, Pharmacol, Neurol dis 3:29–33

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  PubMed  CAS  Google Scholar 

  • Reena TD, Deepthi H, Pravitha MS, Lecturer D (2013) Isolation of phosphate solubilizing bacteria and fungi from rhizospheres soil from banana plants and its effect on the growth of Amaranthus cruentus L. IOSR J Pharmacy Biol Sci 5:06–11

    Article  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.) Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Resende MP, Jakoby ICMC, dos Santos LCR, Soares MA, Pereira FD, Souchie EL, Silva FG (2014) Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum brasiliense Cambess). Afr J Microbiol Res 8(27):2616–2623

    Article  CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martı’nez-Toledo V, Gonza’lez-Lo´ pez J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

    Article  CAS  PubMed  Google Scholar 

  • Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2015) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381–396

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Ruinen J (1956) Occurrence of Beijerinckia species in the phyllosphere. Nature 178:220–221

    Article  Google Scholar 

  • Saber Z, Pirdashti H, Esmaeili M, Abbasian A, Heidarzadeh A (2012) Response of wheat growth parameters to co-inoculationof plant growth promoting Rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Appl Sci J 16:213–219

    CAS  Google Scholar 

  • Safari D, Jamali F, Nooryazdan HR, Bayat F (2016) Screening fluorescent pseudomonads isolated from wheat rhizosphere for plant growth- promoting and salt tolerance properties. Biol Forum – An Int Journal 8:35–42

    Google Scholar 

  • Saif S, Khan MS, Zaidi A, Ahmad E (2014)Role of phosphate solubilizing actinomycetes in plant growth promotion: current perspective. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilising microorganisms: principles and application of microphos technology. Springer, Switzerland; pp 137–156

    Google Scholar 

  • Salma Z, Sindhu SS, Ahlawat VP (2014) Suppression of Fusarium wilt disease in gladiolus by using rhizobacterial strains. J Crop Weed 10:466–471

    Google Scholar 

  • Sane SA, Mehta SK (2015) Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. J Fertil Pestic 6(2):156–160

    Article  Google Scholar 

  • Sarfraz M, Abid M, Mehdi SM (2009) External and internal phosphorus requirements of wheat in Rasulpur soil series of Pakistan. Soil Environ 28:38–44

    CAS  Google Scholar 

  • Sarkar A, Islam T, Biswas GC, Alam S, Hossain M, Talukder NM (2012) Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. ActaMicrobiol Immunol Hung 59:199–213

    Article  CAS  Google Scholar 

  • Sarker A, Talukder NM, Islam MT (2014) Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci Today 1:86–93

    Article  Google Scholar 

  • Satyanandam T, Babu K, Rosaiah G, Vijayalakshmi M (2014) Screening of Rhizobium strains isolated from the root nodules of Vigna mungo cultivated in rice fallows for their phosphate solubilizing ability and enzymatic activities. Brit Microbiol Res J4:996–1006

    Article  Google Scholar 

  • Saxena J, Minaxi, Jha A (2014) Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants. Clean (Weinh) 42:1248–1252

    CAS  Google Scholar 

  • Saxena J, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Pl Nutr 13:511–525

    Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Schoebitz M, Ceballos C, Ciampi L (2013) Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. J Soil Sci Plant Nutr 13(1):1–10

    Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita Pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. Sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813

    Article  Google Scholar 

  • Sharma AK (2002) Bio-fertilizers for sustainable agriculture. AgrobiosIndia, Jodhpur, p 407

    Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SS (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in Central India. J Microbiol Biotechnol 21:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Rawat US, Yadav BK (2012) Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. ISRN Agronomy. Article ID 234656, 9 pages. doi:10.5402/2012/234656

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastave M, D’Souza SF (2014) Bio-solubilization of rock phosphate and plant growth promotion by Aspergillus niger TMPS1 in ultisol and vertisol. International symposium on managing soils for food security and climate change adaptation and mitigation. Vienna, Austria

    Google Scholar 

  • Sial NA, Memon MY, Abro SA, Shah JA, Depar ND, Abbas M (2015) Effect of phosphate solubilizing bacteria (Bacillus megaterium) and phosphate fertilizer on yield and yield components of wheat. Pak J Biotechnol 12:35–40

    Google Scholar 

  • Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34

    Article  CAS  Google Scholar 

  • Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014; Article eID 426483, 7 pages, doi:10.1155/2014/426483

  • Singh RP, Jha PN (2015) Plant growth promoting potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: a plant adapted to saline environments. Int J Curr Microbiol App Sci 4(7):142–152

    Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA 23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Sönmez F, Tüfenkçi Åž (2015) Investigation the effects of different doses organic fertilizers and phosphate solubilizing bacterias on yield and nutrient contents in chickpea (Cicer arietinum L.) Int J Second Metab (IJSM) 2:43–53

    Google Scholar 

  • Surapat W, Pakahuta C, Rattanachaikunsopon P, Aimi T, Boonlue S (2013) Characteristics of phosphate solubilization by phosphate solubilizing bacteria isolated from agricultural chilli soil and their efficiency on the growth of chilli (Capsicum frutescens L. Cv. Hua Rua). Chiang Mai J Sci 40:11–25

    CAS  Google Scholar 

  • Susilowati LE, Syekhfani (2014) Characterization of phosphate solubilizing bacteria isolated from Pb contaminated soils and their potential for dissolving tricalcium phosphate. J Degrad Min Lands Manag 1:57–62

    Google Scholar 

  • Tahir M, Mirza MS, Zaheer A, Dimitrov MR, Smidt H, Hameed S (2013) Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.) Aus J Crop Sci 7:1284

    Google Scholar 

  • Tallapragada P, Usha S (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Timsina J, Connor DJ (2001) Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crop Res 59:93–132

    Article  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomar US, Tomar IS, Badaya AK (1998) Response of chemical and biofertilizer on some matric traits in wheat. Crop Res 16:408–410

    Google Scholar 

  • Turk MA, Tawaha AM (2002) Impact of seedling rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. Minor) in the absence of moisture stress. Biotechnol Agron Soc Environ 6:171–178

    Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • USDA (2010) Grain Report No. IN 1011. Washington, Global Agricultural Information Network

    Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P (1984) Evaluation of phosphorous solubilization by microorganisms isolated from aridisols. J Ind Soc Soil Sc 32:273–277

    CAS  Google Scholar 

  • Venieraki A, Dimou M, Pergalis P, Kefalogianni I, Chatzipavlidis I, Katinakis P (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61:277–285

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–226

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016a) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. doi:10.1016/j.sjbs.2016.01.042

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016b) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:123–112

    Article  Google Scholar 

  • Vijayabharathi R, Sathya A, Gopalakrishnan S (2016) A renaissance in plant growth-promoting and biocontrol agents by endophytes. In: Microbial inoculants in sustainable agricultural productivity. Springer, India; pp 37–60.

    Google Scholar 

  • Wahid OA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 5(3):221–227

    Article  Google Scholar 

  • Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Walpola BC, Yoon MH (2013a) In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. Afr J Microbiol Res 7:3534–3541

    Google Scholar 

  • Walpola BC, Yoon MH (2013b) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorus uptake of mung bean (Vigna radiata [L.]R. Wilzcek). Chilean J Agric Res 73:275–281

    Article  Google Scholar 

  • Walpola C, Yoon MH (2013c) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7:266–275

    CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wibisono MG, Veneklaas E, Mendham DS, Hardiyanto EB (2015) Nitrogen fixation of Acacia mangium Willd. From two seed sources grown at different levels of phosphorus in an ultisol, South Sumatra, Indonesia. South Forests A J Forest Sci 77:59–64

    Article  Google Scholar 

  • Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159(2):330–342

    Article  CAS  PubMed  Google Scholar 

  • Xiao CQ, Chi RA, Hu LH (2013) Solubilization of aluminum phosphate by specific Penicillium spp. J Cent South Univ 20:2109–2114

    Article  CAS  Google Scholar 

  • Yasser MM, Mousa ASM, Massoud ON, Nasr SH (2014) Solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from Egyptian soils. J Biol Earth Sci 4:B83–B90

    Google Scholar 

  • Younis A, Riaz A, Ikram S, Nawaz T, Hameed M, Fatima S, Batool R, Ahmad F (2013) Salinity-induced structural and functional changes in three cultivars of Alternanthera bettzickiana (Regel) G. Nicholson. Turk J Agri For 37:674–687

    Article  CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Planta 33:145–152

    Article  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS (2014) Role of phosphate solubilising microbes in the management of plant diseases. In: Khan MS,Zaidi A, Musarrat J (eds) Phosphate solubilising microorganisms: principles and application of Microphos technology. Springer, Switzerland; pp 225–256

    Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zia-ul-Hassan ATS, Shah AN, Jamro GM, Rajpar I (2015) Biopriming of wheat seeds with rhizobacteria containing ACC deaminase and phosphate solubilizing activities increases wheat growth and yield under phosphorus deficiency. Pak J Agri Agril Engg Vet Sci 31:24–32

    Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuezmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Khan, M.S., Rizvi, A., Saif, S., Zaidi, A. (2017). Phosphate-Solubilizing Microorganisms in Sustainable Production of Wheat: Current Perspective. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_3

Download citation

Publish with us

Policies and ethics