Skip to main content

Earthworms and Associated Microbiome: Natural Boosters for Agro-Ecosystems

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

Nature has bestowed every living creature with unique qualities for maintaining an ecological balance. Earthworms are equipped with wonderful machinery, absolutely different from other organisms, which allow them to nurture the soil beautifully, having a direct impact on the production and quality of crops. Worms act as natural boosters when organic matter is converted into vermicompost and as soil conditioners bringing beneficial microbial activity to plants for growth and development. Microbial stimulation in the presence of earthworms may be due to the utilization of additional nutritive substances (secretion and excretion products) that they provide. Vermicomposting is highly nutritive and a growth promoter as compared to conventional compost. The process of vermicomposting has been well studied by earlier researchers, covering almost every aspect, but scant scientific literature is available on the relationship of earthworms with microbial diversity in different ecosystems. This chapter investigates how earthworms are natural boosters for agro-ecosystems and the role earthworms play in activating different microbes in agriculture fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aira M, Monroy F, Domınguez J (2007) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671

    Article  PubMed  Google Scholar 

  • Aira M, Sampedro L, Monroy F, Domínguez J (2008) Detritivorous earthworms directly modify the structure, thus altering the functioning of a micro decomposer food web. Soil Biol Biochem 40:2511–2516

    Article  CAS  Google Scholar 

  • Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48

    Article  CAS  Google Scholar 

  • Ansari AA (2008) Effect of vermicompost on the productivity of potato (Solanum tuberosum), spinach (Spinacia oleracea) and turnip (Brassica campestris). World J Agric Sci 4(3):333–336

    Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Welch C, Metzger JD (2004) Influences of vermicomposts on field strawberries: effects on growth and yields. Bioresour Technol 93:145–153

    Article  CAS  PubMed  Google Scholar 

  • Azarmi R, Ziveh PS, Satari MR (2008) Effect of vermicompost on growth, yield nd nutrational status of tomato (Lycopersicum esculentum). Pak J Biol Sci 11(14):1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Baker GH, Williams PM, Carter PJ, Long NR (1997) Influence of lumbricid earthworms on yield and quality of wheat and clover in glasshouse trials. J Soil Biol Biochem 29(3/4):599–602

    Article  CAS  Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford, UK, p 242

    Book  Google Scholar 

  • Bardgett RD, Frankland JC, Whittaker JB (1993) The effects of agricultural practise on the soil biota of some upland grasslands. Agric Ecosyst Environ 45:25–45

    Article  Google Scholar 

  • Benitez E, Sainz H, Nogales R (2005) Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresour Technol 96:785–790

    Article  CAS  PubMed  Google Scholar 

  • Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nat Educ Knowl 2(2):12

    Google Scholar 

  • Bhadauria T, Saxena, KG (2007) Influence of landscape modification on earthworm biodiversity in the Garhwal region of central Himalayas. Proceedings of Indo-US workshop on Vermitechnology in human welfare, Coimbatore. pp 80–95

    Google Scholar 

  • Bianchina JN (2009) Development of a flow system for the determination of Cd in fiel alcohol using vermicompost as bioabsorbent. Talanta 78:333–336

    Article  CAS  Google Scholar 

  • Binet F, Fayolle L, Pussard M (1998) Significance of earthworms in stimulating soil microbial activity. Biol Fertil Soils 27:79–84

    Article  Google Scholar 

  • Bohlen PJ, Edwards CA (1995) Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol Biochem 27:341–348

    Article  CAS  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    Article  CAS  Google Scholar 

  • Byzov BA, Nechitaylo TY, Bumazhkin BK, Kurakov AV, Golyshin PN, Zvyagintsev DG (2009) Culturable microorganisms from the earthworm digestive tract. Microbiology 78:360–368

    Article  CAS  Google Scholar 

  • Carpenter D, Hodson ME, Eggleton P, Kirk C (2007) Earthworm induced mineral weathering: preliminary results. ISEE8: International Symposium on Earthworm Ecology 8:341 Krakov, Poland

    Google Scholar 

  • Chand S, Pande P, Prasad A, Anwar M, Patra DD (2007) Influence of integrated supply of vermicompost and zinc-enriched compost with two graded levels of iron and zinc on the productivity of geranium. Commun Soil Sci Plant Anal 38:2581–2599

    Article  CAS  Google Scholar 

  • Citernesi U, Neglia R, Seritti A, Lepidi AA, Filippi C, Bagnoli G, Nuti MP, Galluzzi R (1977) Nitrogen fixation in the gastro-enteric cavity of soil animals. Soil Biol Biochem 9:71–72

    Article  Google Scholar 

  • Clapperton MJ, Lee NO, Binet F, Conner RL (2001) Earthworms indirectly reduce the effect of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticium aestivum cv. Fielder). Soil Biol Biochem 33:1531–1538

    Article  CAS  Google Scholar 

  • Contreras E (1980) Studies on the intestinal actinomycete flora of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 20:411–416

    Google Scholar 

  • Cooke A, Luxton M (1980) Effect of microbes on food selection by Lumbricus terrestris L. Rev Écol Biol Sol 17:365–370

    Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477

    Article  CAS  Google Scholar 

  • Daane LL, Haggblom MM (1999) Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl Environ Microbiol 65(6):2376–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1881) The formation of vegetable moulds through the action of worms. Murray Publications, London

    Book  Google Scholar 

  • Davidson SK, Stahl DA (2006) Transmission of nephridial bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol 72:769–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devliegher W, Verstraete W (1995) Lumbricus terrestris in a soil core experiment: nutrient-enrichment processes (NEP) and gut-associated processes (GAP) and their effect on microbial biomass and microbial activity. Soil Biol Biochem 27:1573–1580

    Article  CAS  Google Scholar 

  • Dhanalakshmi V, Remia KM, Shanmugapriyan R, Shanthi K (2014) Impact of addition of vermicompost on vegetable plant growth. Int Res J Biol Sci 3(12):56–61

    Google Scholar 

  • Doube BM, Schmidt O, Killham K, Correll R (1997) Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575

    Article  CAS  Google Scholar 

  • Domínguez J, Aira M, Brandón G (2010) Vermicomposting: earthworms enhance the work of microbes. In: InsamI H, Franke-Whittle I, Goberna M (eds) Microbes at work: from wastes to resources. Springer, Berlin Heidelberg

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) The role of earthworms in organic matter and nutrient cycles. In: Biology and ecology of earthworms. Chapman and Hall, New York, pp 155–180

    Google Scholar 

  • Edwards CA, Lofty R (1977) The biology of earthworms. Chapmann and Hall, London

    Book  Google Scholar 

  • Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol 48:187–197

    Article  CAS  PubMed  Google Scholar 

  • Enami Y, Okano S, Yada H, Nakamura Y (2001) Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern. Eur J Soil Biol 37:269–272

    Article  CAS  Google Scholar 

  • Farrell FC, Jaffee BA, Strong DR (2006) The nematode-trapping fungus Arthrybotrys oligospora in soil of the bodega marine reserve: distribution and dependence on nematode-parasitized larvae. Soil Biol Biochem 38:1422–1429

    Article  CAS  Google Scholar 

  • Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196

    Article  CAS  Google Scholar 

  • Gordon JC, Wheeler CT (2012) Biological nitrogen fixation in forest ecosystems: foundations and applications, vol 9. Springer Science & Business Media, Hauge/Boston/London

    Google Scholar 

  • Graff O (1971) Beeinflussen Regenwurmröhren die flanzenernährung. Landbauforschung Volkenrode 21:303–320

    Google Scholar 

  • Gresshoff PM, Hayashi S, Biswas B, Mirzaei S, Indrasumunar A, Reid D, Samuel S, Tollenaere A, Hameren BV, Hastwell A, Scott P, Ferguson BJ (2015) The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J Plant Physiol 172:128–136

    Article  CAS  PubMed  Google Scholar 

  • Haritha Devi S, Vijayalakshmi K, Pavana Jyotsna K, Shaheen SK, Jyothi K, Surekha Rani M (2009) Comparative assessment in enzyme activities and microbial populations during normal and vermicomposting. J Environ Biol 30:1013–1017

    PubMed  Google Scholar 

  • Harley JL (1971) Fungi in ecosystems. J Ecol 59:653–668

    Article  Google Scholar 

  • Hidalgo PR, Harkess RL (2002) Earthworm casting as a substrate amendment for chrysanthemum production. Hortscience 37(7):1035–1039

    Google Scholar 

  • Hildebrand JG (1995) Analysis of chemical signals by nervous systems. PNAS 92:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandte K, Holmstrom S, Landeweert R, Lundstrom US, Rosling A, Sens R, Smit MM, VanHee PAW, VanBreemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail SA (1995) Earthworms in soil fertility management. In: Thampan PK (ed) Organic agriculture. Peekay Tree Crops Development Foundation, Cochin, pp 77–100

    Google Scholar 

  • Ismail SA (2005) The earthworm book. Other India Press, Mapusa, Goa, 101pp

    Google Scholar 

  • Ismail SA, Seshadri CV, Jeeji Bai N, Surya Kumar CR (1993) Composting through earthworms, Monograph series, vol 35. Shri AMM Murugappa Chettier Research Centre, Chennai, p 38

    Google Scholar 

  • Jayasinghe BATD, Parkinson D (2009) Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl Soil Ecol 43:1–10

    Article  Google Scholar 

  • Jolly JM, Lappin-Scott HM, Anderson JM, Clegg CD (1993) Scanning electron microscopy of the gut microflora of two earthworms: Lumbricus terrestris and Octolasion cyaneum. Microbial Ecol 26:235–245

    Article  CAS  Google Scholar 

  • Joshi R, Vig AP (2010) Effect of vermicompost on growth, yield and quality of tomato (Lycopersicum esculentum L). Afr J Basic Appl Sci 2(3–4):117–123

    Google Scholar 

  • Kale RD, Bano K (1986) Field trials with vermicompost (vee comp. E. 8. UAS) on organic fertilizers. In: Dass MC, Senapati BK, Mishra PC (eds) Proceedings of the national seminar on organic waste utilization. Sri Artatrana Ront, Burla, pp 151–157

    Google Scholar 

  • Karmegam N, Alagumalai K, Daniel T (1999) Effect of vermicompost on the growth and yield of green gram (Phaseolus aureus Roxb.) Trop Agric 76:143–146

    Google Scholar 

  • Karsten GR, Drake HL (1995) Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khambata SR, Bhat JV (1953) Studies on a new oxalate-decomposing bacterium, pseudomonas oxalaticus. J Bacteriol 66:505–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp BA, Seeber J, Podmirseg SM, Meyer E, Insam H (2008) Application of denaturing gradient gel electrophoresis (DGGE) for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions. J Entomol Res 98:271–279

    CAS  Google Scholar 

  • Knop (1926) Bakterien und Bakteroiden bei Oligochäten. Z. Morphol. Ökologie Tiere 6:588–624

    Article  Google Scholar 

  • Kumar V, Singh KP (2001) Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour Technol 76:173–175

    Article  CAS  PubMed  Google Scholar 

  • Kumar DS, Kumar PS, KumarVU AG (2014) Influence of biofertilizer mixed flower waste vermicompost on the growth, yield and quality of groundnut (Arachis hypogea). World Appl Sci J 31(10):1715–1721

    Google Scholar 

  • Lachnicht SL, Hendrix PF (2001) Interaction of earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in subtropical Spodosol. Soil Biol Biochem 33:1411–1417

    Article  CAS  Google Scholar 

  • Lavelle P, Martin A (1992) Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol Biochem 24(12):1491–1498

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Lavelle P, Zaidi Z, Schaefer R (1983) Interactions between earthworms, soil organic matter and microflora in an African savanna soil. In: Lebrum P, Andre HM, de Medts A, Gregoire-Wibo C, Wauthy G (eds) New trends in soil biology. Louvain-la-Neuve, Dieu Brichart, pp 253–259

    Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    Article  CAS  Google Scholar 

  • Lazcano C, Sampedro L, Zas R, Domínguez J (2010a) Vermicompost enhances germination of the maritime pine (Pinus pinaster ait.) New Forestry 39:387–400

    Article  Google Scholar 

  • Lazcano C, Sampedro L, Zas R, Dominguez J (2010b) Assessment of plant growth promotion by vermicompost in different progenies of maritime pine (Pinus pinaster ait.) Compost Sci Util 18:111–118

    Article  Google Scholar 

  • Lazcano C, Revilla P, Malvar RA, Domínguez J (2011) Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. J Sci Food Agric 91(7):1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Lee KE (1985) Earthworms, their ecology and relationships with soil and land use. Academic Press, Sydney, p 411

    Google Scholar 

  • Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, Dupont CL, Casamayor EO (2015) Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J Nat 9(7):1648–1661

    Article  CAS  Google Scholar 

  • Lores M, Gómez-Brandón M, Pérez-Díaz D, Domínguez J (2006) Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biol Biochem 38:2993–2996

    Article  CAS  Google Scholar 

  • Lund MB, Holmstrup M, Lomstein BA, Damgaard C, Schramm A (2010) Beneficial effect of Verminephrobacter nephridial symbionts on the fitness of the earthworm aporrectodea tuberculate. Appl Environ Microbiol 76(14):4738–4743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maboeta MS, Van Rensburg L (2003) Vermicomposting of industrially produced wood chips and sewage sludge utilizing Eisenia Foetida. Ecotoxicol Environ Saf 56:265–270

    Article  CAS  PubMed  Google Scholar 

  • Mamta, Wani KA, Rao RJ (2012) Effect of vermicompost on growth of brinjal plant (Solanum melongena) under field conditions. J New Biol Rep 1(1):25–28

    Google Scholar 

  • Marhan S, Kandeler E, Scheu S (2007) Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae). Appl Soil Ecol 35:412–422

    Article  Google Scholar 

  • Martin A (1991) Shortand long term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidæ, Oligochæta) of tropical savannas, on soil organic matter. Biol Fertil Soils 11(3):234–238

    Article  Google Scholar 

  • McLean MA, Migge-Kleian S, Parkinson D (2006) Earthworm invasions of ecosystems devoid of earthworms: effect on soil microbes. Biol Invasions 8:1257–1273

    Article  Google Scholar 

  • Monroy F (2006) Efecto das miñocas (clase Oligochaeta) sobre a comunidade descompoñedora durante o proceso de vermicompostaxe. PhD diss., Universidade de Vigo, Spain

    Google Scholar 

  • Mukherjee RN, Julka JM (1984) On the occurrence of the soil protozoa in the intestine of earthworm Amynthas morrisi (Beddard) in Himachal Pradesh. J Soil Biol Ecol 4(1):60–61

    Google Scholar 

  • Nechitaylo TY, Yakimov MM, Godinho M, Timmis KN, Belogolova E, Byzov BA, Kurakov AV, Jones DL, Golyshin PN (2010) Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microbial Ecol 59:574–587

    Article  Google Scholar 

  • Neilson R, Boag B (2003) Feeding preferences of some earthworm species common to upland pastures in Scotland. Pedobiologia 47:1–8

    Article  Google Scholar 

  • Nethra NN, Jayaprasad KV, Kale RD (1999) China aster (Callistephus chinensis (L)) cultivation using vermicompost as organic amendment. Crop Res 17(2):209–215

    Google Scholar 

  • Orozco FMJ, Cegarra LM, Trujillo RA (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effect on C and N contents and the availability of nutrient. Biol Fertil Soils 22:162–166

    Article  Google Scholar 

  • Parle JN (1963) A microbiological study of earthworm casts. J Gen Microbiol 31:13–22

    Article  CAS  Google Scholar 

  • Parthasarathi K (2004) Vermicomposts produced by four species of earthworms from sugar mill wastes (pressmud). Ind J Life Sci 1:41–46

    Google Scholar 

  • Parthasarathi K, Gunasekaran G, Ranganathan LS (2006) Efficiency of mono and polycultured earthworms in humification of organic wastes. J Ann Uni Sci 42:127–134

    Google Scholar 

  • Parthasarathi K, Ranganathan LS, Anandi V, Zeyer J (2007) Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J Environ Biol 28:87–97

    CAS  PubMed  Google Scholar 

  • Pathma J, Rahul GR, Kamaraj Kennedy R, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Cont 25:165–181

    Google Scholar 

  • Pedersen JC, Hendriksen NB (1993) Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected gram-negative and total bacteria. Biol Fertil Soils 16:227–232

    Article  Google Scholar 

  • Petersen H, Luxton MA (1982) A comparative analysis of soil fauna populations and their role in decomposition process. Oikos 39:287–388

    Google Scholar 

  • Peyvast G, Olfati JA, Madeni S, Forghani A (2008) Effect of vermicompost on the growth and yield of spinach (Spinacia oleracea L.) J Food Agric Environ 6(1):110–113

    Google Scholar 

  • Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. Nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida(savigny). Int J Syst Evol Microbiol 58:2147–2157

    Article  CAS  PubMed  Google Scholar 

  • Pizl V, Novakova A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia 47:895–899

    Google Scholar 

  • Prabha ML, Jayraaj IA, Jayaraj R, Rao DS (2007) Effect of vermicompost and compost on growth parameters of selected vegetable and medicinal plants. Asian J Microbiol Biotechnol Environ Sci 9(2):321–326

    Google Scholar 

  • Premono EM, Moawad MA, Vlek PLG (1996) Effect of phosphate-solubilizing pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  • Rao KR, Mulani AC, Parlekar GY, Shah NV (2010) Effect of vermicompost on the growth and yield of onion (Allium cepa). Karnataka J Agric Sci 23(2):361–363

    Google Scholar 

  • Reddy YTN, Kurian RM, Ganeshamurthy AN, Pannersalvam P, Prasad SR (2014) Effect of organic practices on growth, fruit yield, quality and soil health of papaya cv. Arka Prabhat Indian Horticult J 4(1):9–13

    Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, pp 259–322

    Google Scholar 

  • Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soils 5(3):230–234

    Article  Google Scholar 

  • Schinner F, Ohlinger R, Kandeler E, Margesin R (eds) (2012) Methods in soil biology. Springer Science & Business Media

    Google Scholar 

  • Schramm A, Davidson SK, Dodsworth JA, Drake HL, Stahl DA, Dubilier N (2003) Acidovorax-like symbionts in the nephridia of earthworms. Environ Microbiol 67:804–809

    Article  CAS  Google Scholar 

  • Senapati BK, Lavelle P, Giri S, Pashanasi B, Alegre J, Decaens T, Jiménez JJ, Albrecht A, Blanchart E, Mahieux M, Rousseaux L, Thomas R, Panigrahi PK, Venkatachalan M (1999) Soil earthworm technologies for tropical agro-ecosystems. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agro-ecosystems. CABI, Wallingford, pp 199–237

    Google Scholar 

  • Shadanpour F, Torkashvand AM, Majd KH (2011) The effect of cow manure vermicompost as the planting medium on the growth of marigold. Ann Biol Res 6:109–115

    Google Scholar 

  • Singh KP, Kumar V, Hooda JS (2000) The effect of inoculation with Eisenia foetida, N-fixing and P-solubilizing microorganisms on decomposition of cattle dung and crop residues. Biol Hort Agril 18(2):103–112

    Article  Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.) Bioresour Technol 99:8507–8511

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Hendrixb PF, Colemanb DC, Whitmana WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35:1547–1555

    Article  CAS  Google Scholar 

  • Sinha RK, Herat S, Valani D, Chauhan K (2009) Vermiculture and sustainable agriculture. Am Euras J Agric Environ Sci 5:51–55

    Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric Sci 1:76–94

    Google Scholar 

  • Stephens PM, Davoren CW, Doube BM, Ryder MH (1993) Reduced superiority of Rhizoctonia solani disease on wheat seedlings associated with the presence of the earthworm Aporrectodea trapezoids. Soil Biol Biochem 11:1477–1484

    Article  Google Scholar 

  • Suhane RK (2007) Vermicompost. Publication of Rajendra Agriculture University, Pusa, p 88

    Google Scholar 

  • Suthar S (2009) Vermicomposting of vegetable-market solid waste using Eisenia fetida: impact of bulking material on earthworm growth and decomposition rate. Ecol Eng 35(5):914–920

    Article  Google Scholar 

  • Thakuria D, Schmid O, Finan D, Egan D, Doohan FM (2010) Gut wall bacteria of earthworms: a natural selection process. ISME J 4:357–366

    Article  PubMed  Google Scholar 

  • Tiunov AV, Dobrovolskaya TG (2002) Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 46:595–605

    Article  Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1989) Microbial populations, enzyme activities and nitrogen, phosphorous, potassium enrichment in earthworm casts and in the surrounding soil of pine apple plantation. Biol Fertil Soils 8:178–182

    Article  Google Scholar 

  • Tomati U, Galli E, Grappelli A, Dihena G (1990) Effect of earthworm casts on protein synthesis in radish (Raphanus Sativum) and lettuce (Lactuca sativa) seedlings. Biol Fertil Soils 9:288–299

    Article  CAS  Google Scholar 

  • Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia foetida. Biol Fertil Soils 31:187–190

    Article  Google Scholar 

  • Vadiraj BA, Siddagangaiah D, Potty SN (1998) Response of coriander (Coriandrum sativum L.) cultivars to graded levels of vermicompost. J Spices Aromatic Crops 7:141–143

    Google Scholar 

  • Vaz-Moreira I, Silva ME, Manaia CM, Nunes OC (2008) Diversity of bacterial isolates from commercial and homemade composts. Microbial Ecol 55:714–772

    Article  Google Scholar 

  • Vivas A, Moreno B, Garcia-Rodriguez S, Benitez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure, and functional diversity of an olive-mill waste. Bioresour Technol 100:1319–1326

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Shi Q, Wang X, WeiM HJ, Liu J, Yang F (2010) Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol Fertil Soils 46:689–696

    Article  Google Scholar 

  • Wani KA, Mamta, Rao RJ (2013) Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida. Saudi J Biol Sci 20(2):149–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster KA (2005) Vermicompost increases yield of cherries for three years after a single application. EcoResearch, South Australia

    Google Scholar 

  • Zaller JG (2007) Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hortic 112:191–199

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq A. Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wani, K.A., Mamta, Shuab, R., Lone, R.A. (2017). Earthworms and Associated Microbiome: Natural Boosters for Agro-Ecosystems. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_25

Download citation

Publish with us

Policies and ethics