Skip to main content

Probiotic Microbiome: Potassium Solubilization and Plant Productivity

  • Chapter
  • First Online:
  • 1181 Accesses

Abstract

The rhizosphere of plant roots supports a range of potassium-solubilizing microbes (KSMs). These KSMs solubilize the insoluble and unavailable potassium (K) to forms of K available for uptake and transport by the plant. Potassium is one of the unavoidable elements required for growth and yield. The specific rhizospheric microbes that perform the process of K solubilization include both bacteria and fungi, the foremost of which are: Bacillus sp. (B. Mucilaginosus, B. megaterium, B. globisporus, B. edaphicus) Pseudomonas putida, Enterobacter hormaechei, Acidothiobacillus ferrooxidans, Paenibacillus sp., and Arthrobacter sp.) Aspergillus terresus, Fusarium oxysporum, Aspergillus fumigatus, and Aspergillus niger. Agricultural soil particulates hold minerals such as illite, biotite, orthoclase, mica, and feldspar that contain potassium; however, this is not accessible to plants due to its immobilized form. In soil chemistry, after N and P, K is an important element; a major role is played by the rhizosphric microbes in mobilizing the inaccessible form of K to the roots of the plant. The rhizospheric K-solubilizing microbes such as Bacillus, Pseudomonas, and Aspergillus expel organic acids, which solubilize the insoluble K and make it available to plant roots. Most of the research work in this area has been conducted on nitrogen fixing and phosphate-solubilizing microbes. Solubilized K (quickly available) in addition to the existing biofertilizers needs additional consideration at a profitable scale. The current chapter presents information to fill the knowledge gaps about K-solubilizing/mobilizing microorganisms in soil, and looks at the current and future facets of K-solubilizing microbes for enhanced crop production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci 19(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Andrist-Rangel Y, Edwards AC, Hillier S, Oborn I (2007) Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties. Agric Ecosyst Environ 122:413–426

    Article  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arquero O, Barranco D, Benlloch M (2006) Potassium starvation increases stomatal conductance in olive trees. Hortscience 41:433–436

    CAS  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7(30):4250–4259

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3(12):80–85

    Google Scholar 

  • Basak BB, Biswas DR (2008) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46(6):641–648

    Article  Google Scholar 

  • Blake L, Mercik S, Koerschens M, Goulding KWT, Stempen S, Weigel A, Poulton PR, Powlson DS (1999) Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 216(1):1–14

    Article  CAS  Google Scholar 

  • Britzke D, da Silva LS, Moterle DF, Rheinheimer D, Bortoluzzi EC (2012) A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J Soils Sediments 12:185–197

    Article  CAS  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province, Vietnam. Am J Life Sci 1(3):88–92

    Article  CAS  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya MS, Rathore A (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springerplus 2:574

    Article  PubMed  PubMed Central  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Res Rev J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Boil Sci vol 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani K, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate – potassium rocks and their effect on khella (Ammi visnaga) growth. Ann Agric Sci (Cairo) 55:37–53

    Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22(9):983–990

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28(3):301–305

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Li YF (1994) The characteristics and function of silicate dissolving bacteria fertilizer. Soil Fertil 2:48–49

    Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sinica 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liu GY (2001) Screening of silicate bacteria with potassium releasing and antagonistic activity. Chin J Appl Environ Biol 7:66–68

    CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology J 29:413–421

    Article  CAS  Google Scholar 

  • Lopo de SáI AF, Valeri SV II, Pessoa da Cruz IIMC, Carlos Barbosa IIJ, Rezende GM II, Teixeira MP (2014) Effects of potassium application and soil moisture on the growth of Corymbia citriodora plants. Cerne 20(4):645–651

    Article  Google Scholar 

  • Maathuis FJM, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48:451–458

    Article  CAS  PubMed  Google Scholar 

  • Magri MMR, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55(4):577–582

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347

    Article  CAS  PubMed  Google Scholar 

  • Memon YM, Fergus IF, Hughes JD, Page DW (1988) Utilization of non-exchangable soil potassium in relation to soil types, plant species and stage of growth. Aust J Soil Res 26:489–496

    Article  CAS  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latnian J Agron 8:154–157

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoscus Esculantus). Int J Agric Sci 3:181–188

    Google Scholar 

  • Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. Am Mineral 83:1532–1540

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2015) Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr 24:261–275

    Article  Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: Occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3(9):622–629

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium up-take of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–665

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(5):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.) J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1987) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 201–276

    Google Scholar 

  • Styriakova I, Styriak I, Galko I, Hradil D, Bezdicka P (2003) The release of iron-bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Acta Pedol Sin 47(1):20–26

    CAS  Google Scholar 

  • Subba Rao NS (2001) An appraisal of bio fertilizers in India. In: Kannian S (ed) Biotechnology of biofertilizers. Narosa Publication House, New Delhi

    Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agrl Sci 3:350–355

    Google Scholar 

  • Supanjani HHS, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Swaminathan MS, Bhavani RV (2013) Food production & availability – essential prerequisites for sustainable food security. Indian J Med Res 138(3):383–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Freyklett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xeng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  Google Scholar 

  • Yang ML, Yan CX, Si SD (2014) Effect of potassium-solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale. Chin J Nonferrous Metals 24:48–52

    CAS  Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723

    Article  Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1-3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis a soil microorganism with biological control potential. Afr J Microbiol Res 7(1):41–47

    Article  Google Scholar 

  • Zhanga C, Konga F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture – status and perspectives. J Plant Physiol 171(9):656–669

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Teotia, P., Kumar, V., Kumar, M., Prasad, R., Sharma, S. (2017). Probiotic Microbiome: Potassium Solubilization and Plant Productivity. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_24

Download citation

Publish with us

Policies and ethics