Skip to main content

Influence of Arbuscular Mycorrhizal Fungal Effect and Salinity on Curcuma longa

  • Chapter
  • First Online:
Probiotics in Agroecosystem
  • 1120 Accesses

Abstract

The endophytic Arbuscular Mycorrhizal (AM) fungi is mutually associated with root systems of higher plants. This fungus colonizes both inter- and intracellularly in the roots of plants. Curcuma longa is a herbaceous perennial plant commonly called turmeric, belonging to the Zingiberaceae family and native to southern Asia, particularly India. Our country is a leading producer and exporter of turmeric in the world. It is used as a condiment, dye, cosmetic, and medicine, and is also used in religious ceremonies. The present study focuses on the influence of AM fungal effect and salinity on Curcuma longa plants grown under greenhouse conditions. This investigation reported that lower concentrations of sodium chloride do not show drastic effects on plant growth when they are treated with AM fungi compared to non-AM fungi-inoculated control plants. Thus AM fungi improved the salt tolerance in Curcuma longa plants at lower concentrations of sodium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allakhverdiev SI, Sankamoto A, Nishijama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of sodium chloride – induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvey S, Bagyaoko M, Neumann G, Buerkert A (2001) Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant Soil 231:45–54

    Article  CAS  Google Scholar 

  • Arihara J, Karasawa T (2000) Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci Plant Nutr 46(1):43–51

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 373:245–256

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Role of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:207–216

    Article  Google Scholar 

  • Ashraf M, Shahbaz M (2003) Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relation as selection criteria. Photosynthetica 41:273–280

    Article  Google Scholar 

  • Athar M (2005) Nodulation of native legumes in Pakistani range lands. Agric Conspec Sci 70:49–54

    Google Scholar 

  • Atimanav G, Adholeya A (2002) AM inoculations of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218

    Article  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma S (eds) Micro organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 195–212

    Chapter  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Special Publication, Madison, pp 73–89

    Google Scholar 

  • Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: Impact of fungi on soil bacteria niche development. FEMS Micro Biol Rev 29:795–811

    Google Scholar 

  • BØdker L, KjØler R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyceseuteiches in field grown pea. Mycorrhiza 12:7–12

    Article  PubMed  Google Scholar 

  • Chen X, Tang JJ, Zhi GY, Hu SJ (2005) Arbuscular mycorrhizal colonization and phosphorus acquisition of plants: effects of coexisting plant species. Appl Soil Ecol 28:259–269

    Article  Google Scholar 

  • Dalpe Y (2005) Les Mycorrhizes: un outil de protection desplantesmais non unepanace. Phytoprotection 86:53–59

    Article  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during Sodium chloride stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    Article  CAS  Google Scholar 

  • Dumas GE, Guillaume P, Tahiri AA, Gianinazzi-Pearson V, Gianinazzi S (1994) Changes in polypeptide patterns in tobacco roots by Glomus species. Mycorrhiza 4:215–221

    Google Scholar 

  • El-Desouky SA, Atawia AAR (1998) Growth performance of citrus rootstocks under saline conditions. Alexandria J Agric Res 43:231–254

    Google Scholar 

  • Estaun MV (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agric Ecosyst Environ 29:123–129

    Article  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenumgraecum. Mycorrhiza 23:71–86

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomusintraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in Sodium chloride stressed Trigonella foenu graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa T, Yamanoto K, Yoshida S (2000) Species composition and spore density of indigenous vesicular arbuscular mycorrhizal fungi under different condition of P- fertility as revealed by soybean trap culture. Soil Sci Plant Nutr 46(2):297

    Google Scholar 

  • Feng GU, Yang MQ, Bai DS, Feng G, Yang MQ, Bai DS (1998) Influence of VAM Fungi on mineral elements concentration and composition in Bromus inermis under salinity stress. Acta-Prataculturae-Sinica 7:21–28

    Google Scholar 

  • Georgiev GI, Atkias CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture: from genes to bioproducts. BirkhäuserVerlag, Basel

    Book  Google Scholar 

  • Goas G, Goas M, Larher F (1982) Accumulation of free proline and glycine betaine in Aster tripolium subjected to a saline shock: a kinetic study related to light period. Physiol Plant 55:383–388

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizaeand Rhizobium on nutrient content and water relations in drought-stressed alfalfa. Plant Soil 92:261–268

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environment. Agric Ecosyst Environ 38:275–300

    Article  CAS  Google Scholar 

  • Gupta NK, Meena SK, Gupta S, Khandelwal SK (2002) Gas exchange, membrane permeability and ion uptake in two species of Indian Jujube differing in salt tolerance. Photosynthetica 40:535–539

    Article  CAS  Google Scholar 

  • Guriqbal S, Sekhon HS, Poonam S, Singh G, Sharma P (2001) Effect of Rhizobium, vesicular arbuscular mycorrhiza and phosphorus on the growth and yield of lentil (Lensculinaris) and field pea (Pisumsativum). Environ Ecol 19(1):40–42

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenreider C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressnan RA, Zhu JK, Bohnert HT (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28 homo brassinolide on photosynthesis, fluorescence and anti oxidant system in the presence or absence of salinity and temperature in Vignaradiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia 73:610–617

    Article  CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–665

    Article  CAS  Google Scholar 

  • Humphries EC (1956) Mineral components and ash analysis, determination of nitrogen. In: Peach K, Tracey MV (eds) Modern methods of plant analysis, vol 1. Springer, Berlin, pp 469–502

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the invitro development of Glomus intraradicesand on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55(1):45–53

    Article  PubMed  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachishypogaea L.) Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishore Kumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Cathranthusroseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  Google Scholar 

  • Jeffries P (1987) Use of mycorrhiza in agriculture. Crit Rev Biotechnol 5:319–357

    Article  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular arbuscular mycorrhizae on metabolism of mung plants under sodium chloride salinity. Plant Physiol Biochem 3:475–481

    Google Scholar 

  • Johnny LL (1999) Effects of interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum on pea and Lentil. Ph.D.Thesis. The University of Saskatchwan, Canada-0780

    Google Scholar 

  • Joner EJ (2000) The effect of long-term fertilization with organic and inorganic fertilizers on mycorrhiza mediated P uptake in subteraranean clover. Biol Fertil Soils 32:435–440

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to sodium chloride treatments. Photosynthetica 41:415–419

    Article  CAS  Google Scholar 

  • Lioyd J, Kriedemaan PE, Aspinall D (1989) Comparative sensitivity of Prior Lisbon lemon and Valencia orange trees to foliar sodium chloride concentrations. Plant Cell Environ 12:259–540

    Google Scholar 

  • Little TM, Hills FC (1978) Agricultural experimentation. Wiley, New York

    Google Scholar 

  • Lowrey OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramneijad B, Struik PC, Sohrabi E (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction. Plant J 31:699–712

    Article  CAS  PubMed  Google Scholar 

  • Mamtha G, Bagyarai DJ, Jaganath S (2002) Inoculation of field established mulberry and papaya with CAM fungi and mycorrhiza helper bacterium. Mycorrhiza 12:313–316

    Article  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanuscajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Mayoral MLI, Carballo O, Carreno L, de Mejia MG (2000) Effects of VA mycorrhizal inoculation on growth, yoeld, N and P nutrition of nodulating bean varieties in two soil substrates of contrasting fertility. J Plant Nutr 23(8):1117–1133

    Article  Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hypha growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Menconi M, Sgherri CLM, Pinzino C, Navari-izzo F (1995) Activated oxygen species production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot 46:1123–1130

    Article  CAS  Google Scholar 

  • Meshram AT, Jadhav AC, Konde BK, Wani PV (2000) Effect of VAM fungi and P-sources on nodulation, dry matter and yield of chickpea. J Maharashtra Agric Univ 25(1):99–101

    Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl Sci J 3(3):448–453

    Google Scholar 

  • Moisender PH, McClinton E, Paerl HW (2002) Salinity effects on growtphotosynthetic parameters and nitrogenase activity in estuarine planktonic Cyanobacteria. Microb Ecol 43:432–442

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Google Scholar 

  • Murphy KST, Durako MJ (2003) Physiological effects of short term salinity changes on Ruppiamaritima. Aquat Bot 75:293–309

    Article  Google Scholar 

  • Neumann E, George E (2009) The effect of arbuscular mycorrhizal root colonization on growth and nutrient uptake of two different cowpea (Vignaunguiculata L.) Walp. Genotypes exposed to drought stress. Emir J Food Agric 21:1–17

    Article  Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Parida A, Das AB, Das P (2002) Sodium chloride stress causes changes in photo synthetic pigments, proteins and other metabolic components in the leaves of a tree mangrove, Bruguieraparviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Poss JA, Pond EC, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil 88:307–319

    Google Scholar 

  • Raja AR, Shah KH, Aslam M, Memon MY (2002) Response of phosphobacterial and mycorrhizal inoculation in wheat. Asian J Plant Sci 1(4):322–323

    Article  Google Scholar 

  • Ridley SM (1977) Interaction of chloroplast with inhibitors. Induction of chlorosis by diuron during prolonged illumination in vitro. Plant Physiol 59:724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozema J, Arp W, Van Diggelen J, Van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular arbuscular mycorrhiza in the salt marsh environment. Acta Botanica Netherlandica 35:457–467

    Article  Google Scholar 

  • Ruiz-Lozano JM (2006) Physiological and molecular aspects of osmatic stressalleviation in arbuscularmycorrhizal plants. In: Rai M (ed) Hand book of microbial biofertilizers. Haworth Press, New York, pp 283–303

    Google Scholar 

  • Sannazzaro AI, Echeverria M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Sayeed OH (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    Article  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Ahmad R, Ayyub CM, Abbas T, Akhtar N (2011) Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschusesculentus, L.) Soil Environ 30(1):66–73

    CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sheekh-El MM, Omar HH (2002) Effect of high salt stress on growth and fatty acids content of unicellular green agae Chlorella vulgaris. Am J Microbiol 55:181–191

    Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sitaramaiah K, Rahulkhanna T, Trimuthulu N (1998) Effect of Glomus fasciculatum on growth and chemical composition of maize. Soil Microbe Plant Pathol 64:34–37

    Google Scholar 

  • Sivaprasad P, Rai PV (1987) Mechanism of enhanced nodulation in vesicular – arbuscular mycorrhizal (VAM) pigeon-pea, Cajanuscajan (L) Millsp. Agric Res J Kerala 25:99–102

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MN (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Smith SE, Smith FA, Walker NA (1986) Effects of photon irradiation on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum. New Phytol 103:375–390

    Article  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V (2005) Role of arbuscular mycorrhiza and associated micro-organisms in phytoremediation of heavy metal polluted sites. In: Prasad MNV, Sajwan D, Ravi S (eds) Trace elements in the environment. Biogeochemistry biotechnology and bioremediation. New York, USA, CRC Press/Lewis Publishers. (in press)

    Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. BirkhäuserVerlag, Basel, pp 137–149

    Chapter  Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1972) Method for nitrogen. In: Manometric and bio-chemical techniques, 5th edn. Burgess Publishing Company, Minnesota, pp 259–260

    Google Scholar 

  • Van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Verbruggen N, Heramns C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wan C, Wang Y (2004) The characteristics of Na+, K+ and free proline distribution in several drought-resistance plants of the Alxa Desert, China. J Arid Environ 56:525–539

    Article  Google Scholar 

  • Yancy PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1122

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express her immense thanks to the President, Vice-President, Secretary, Principal, HOD of the Botany Department, Thiagarajar College, Madurai, Tamil Nadu, India for their encouragement and for providing the facilities for the successful completion of this research work. The author would also like to express her heartfelt thanks to her family and friends for support in the successful completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sadhana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sadhana, B., Muthulakshmi, S. (2017). Influence of Arbuscular Mycorrhizal Fungal Effect and Salinity on Curcuma longa . In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_22

Download citation

Publish with us

Policies and ethics