Skip to main content

Current Scenario of Root Exudate–Mediated Plant-Microbe Interaction and Promotion of Plant Growth

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

Over the last few years, a boom has been witnessed in the area of soil ecology which has produced numerous data on interactions between plant and rhizospheric microbes. The plant-microbe interactions in the rhizospheric niche have proved to be crucial for the advancement of sustainable farming practices which decrease the usage of chemical fertilizers and pesticides. Root exudates are substances released by plant roots that show a significant role in mediating the plant-microbe interactions in soil. These root exudates send chemical signals to microbes which in response are attracted towards the roots and influence growth of plants, soil properties, and microbial community. This chapter is focussed on recent advancements in the utilization of root exudates in plant-microbe interactions to enhance plant growth promotion. The plant-microbe interactions are categorized as beneficial or detrimental depending upon the characteristics of root exudates. This chapter also covers different types of root exudates and their function in modifying the exchanges between rhizospheric microbes and plants for the betterment of soil health and sustainable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott L, Murphy D (2003) Soil biology fertility: a key to sustainable land use in agriculture. Kluwer Academic Publishers, Dordrecht, pp 187–203

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot Lond 97:925–931

    Article  CAS  Google Scholar 

  • Albarracín VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. J Basic Microbiol 48:323–330

    Article  PubMed  CAS  Google Scholar 

  • Auguy F, Abdel-Lateif K, Doumas P, Badin P, Guerin V, Bogusz D, Hocher V (2011) Activation of the isoflavonoid pathway in actinorhizal symbioses. Funct Plant Biol 38:690–696

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bago NB, Pfeffer PE, Abubakar J, Jun J, Allen JW (2003) Carbon export from arbuscular mycorrizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 13:1496–1507

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004a) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004b) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002a) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.) Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002b) Enantiomeric dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Tiffony L, Weir LT, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plant and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert AV (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis. Mol Plant-Microbe Interact 8:252–258

    Article  CAS  Google Scholar 

  • Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 138:1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl RK, Ruppel S, Kothe E, Narula N (2007) Wheat × Azotobacter × VA mycorrhiza interactions towards plant nutrition and growth – a review. J Appl Bot Food Qual 81:95–109

    CAS  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant-Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modelling perspectives of rhizosphere priming. New Phytol 201:31–44

    Article  CAS  PubMed  Google Scholar 

  • Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  CAS  PubMed  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int J Plant Sci 164:861–866

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Daniel G, Jaffre T, Prin Y (2007) Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a nonnodulated Rhamnaceae endemicto New Caledonia. Eur J Soil Biol 36:169–175

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Howell JE, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carvalho-Niebel F, Timmers AC, Chabaud M, Defaux P, Abarkar DG (2002) The nod factor-elicited annexin MtAnn1 is preferentially localized at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J 32:343–352

    Article  PubMed  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signalling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  PubMed  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B et al (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Huhman DV, Lei ZT, Sumner LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids inroots and cell suspension cultures of Medicago truncatula using HPLC-UVESI- MS and GC-MS. Phytochemistry 68:342–354

    Article  CAS  PubMed  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  CAS  PubMed  Google Scholar 

  • Fray RG (2002) Altering plant microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbeva PV, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Silvia A, Avio L (1996) Analysis of factors involved in fungal recognition response to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Givskov M, Nys RD, Manefield M, Gram L, Maximilien R, Eberl L et al (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci U S A 25:5973–5977

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–410

    Article  CAS  Google Scholar 

  • Guan LL, Kamino K (2001) Bacterial response to siderophore and quorum sensing chemical signals in the seawater microbial community. BMC Microbiol 1:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediate interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro J, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Haichar FZ, Roncato MA, Achouak W (2012) Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microbiol Ecol 81:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hammad Y, Nalin R, Marechal K, Fiasson K, Pepin R, Berry AM, Normand P, Domenach AM (2003) A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Heidstra R, Bisseling T (1996) Nod factor induced host responses and mechanisms of Nod factor perception. New Phytol 133:25–43

    Article  CAS  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Huhman DV, Berhow MA, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J Agric Food Chem 53:1914–1920

    Article  CAS  PubMed  Google Scholar 

  • Inderjit (2001) Soil: environmental effect on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  • Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils 40:7–13

    Article  Google Scholar 

  • Jose S, Gillespie AR (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203:191–197

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and Ltryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kanchan Vishwakarma, Neha Upadhyay, Nitin Kumar, Gaurav Yadav, Jaspreet Singh, Rohit K. Mishra, Vivek Kumar, Rishi Verma, R. G. Upadhyay, Mayank Pandey, Shivesh Sharma, (2017) Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Frontiers in Plant Science 08

    Google Scholar 

  • Kim HB, Oh CJ, Lee H, Sun An C (2003) A type-i chalcone lsomerase mRNA is highly expressed in the root nodules of Elaeagnus umbella. J Plant Biol 46:263–270

    Article  CAS  Google Scholar 

  • Koltai H (2013) Strigolactones’ ability to regulate root development may be executed by induction of the ethylene pathway. Plant Signal Behav 6:1004–1005

    Article  CAS  Google Scholar 

  • Kong CH, Liang WJ, Xu XH, Hu F, Wang P, Jiang Y (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J Agric Food Chem 52:2861–2865

    Article  CAS  PubMed  Google Scholar 

  • Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions. Chem Erde 65(S1):7–27

    Article  CAS  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (G. hirusitum L.) and wheat (T. aestivum L.) J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Rose USR (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–558

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  CAS  PubMed  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Herrera Paredes S, Yourstone S, Gehring J, Malfatti S et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock: biology of microorganisms, 655–667. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM (2012) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root exuded thiophenes from marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Bending W, White PJ (2005) Biological costs and benefits to plant microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Nagahashi G, Douds DD Jr (2003) Action spectrum for the induction of hyphal branches of an arbuscular mycorrhizal fungus: exposure sites versus branching sites. Mycol Res 107:1075–1082

    Article  PubMed  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130

    CAS  Google Scholar 

  • Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  • Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Article  Google Scholar 

  • Page WJ (1987) Iron dependent production of hydroxamate by sodium dependent Azotobacter chroococcum. Appl Environ Microbiol 53:1418–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multihost/ pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42:439–464

    Article  CAS  PubMed  Google Scholar 

  • Parez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS, Fernandez FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth 70:127–131

    Article  CAS  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Weir TL, Callaway RM et al (2005) Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J Ecol 93:1125–1136

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact 12:293–318

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen BK, Jensen PO (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  CAS  PubMed  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Richardson A, Barea JM, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas JE, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 4:59–61

    Google Scholar 

  • Rougier M (1981) Secretory activity at the root cap. In: Tanner W, Loews FA (eds) Encyclopidia of plant physiology, B plant carbohydrates II, vol 13. Springer, Berlin, pp 542–574

    Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde 65:131–144

    Article  CAS  Google Scholar 

  • Sineriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 1:55–62

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–235

    Article  CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stermitz FR, Bais HP, Foderaro TA, Vivanco JM (2003) 7, 8-benzoflavone: a phytotoxin from root exudates of invasive Russian knapweed. Phytochemistry 64:493–497

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci U S A 106:17302–17307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007) Biological nitrification inhibition (BNI) – is it a widespread phenomenon? Plant Soil 294:5–18

    Article  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vera R, Garcia JM, Pozo MJ, Lopez-Raez JA (2013) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  PubMed  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allen DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable source. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG, Tholl D (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I Terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Sharma S, Kumar N, Upadhyay N, Devi S, Tiwari A (2016) Contribution of Microbial Inoculants to Soil Carbon Sequestration and Sustainable Agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity. Springer India, pp. 101–112.

    Google Scholar 

  • Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292

    Article  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003a) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003b) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GE (2012) A common signaling proces that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanism for cellular transport and release of allelochemicals from plant roots into rhizosphere. J Exp Bot 63:1–10

    Article  CAS  Google Scholar 

  • Wu HW, Haig T, Pratley J, Lemerle D, An M (2000) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in root tissues. J Agric Food Chem 48:5321–5325

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xuesong H, Williams C, Deanne LP, Laura OS, Wagner J, Clay F (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185:809–822

    Article  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates GW (1999) Effects of plants on nematode community structure. Annu Rev Phytopathol 37:127–149

    Article  CAS  PubMed  Google Scholar 

  • Yoder JI (2001) Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol 4:359–365

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Pierson LS, Hawes MC (1997) Induction of microbial genes for pathogenesis and symbiosis by chemicals from root border cells. Plant Physiol 115:1691–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Director MNNIT Allahabad for providing necessary facilities and “Design and Innovation Centre” a project sponsored by Ministry of Human Resource Development, Government of India, for supporting the execution of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vishwakarma, K. et al. (2017). Current Scenario of Root Exudate–Mediated Plant-Microbe Interaction and Promotion of Plant Growth. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_18

Download citation

Publish with us

Policies and ethics