Skip to main content

Image Preprocessing for Pathological Brain Detection

  • Chapter
  • First Online:
Pathological Brain Detection

Part of the book series: Brain Informatics and Health ((BIH))

Abstract

Image preprocessing is quite important. This chapter first introduces the concept of k-space, where the acquired signal lies. First, reconstruction is necessary to transform it to spatial space. Then, image denoising techniques are required. Magnetic resonance images are contaminated by Rician noise in addition to common Gaussian noise. Several denoising methods are introduced here. A brain extraction tool is introduced to strip the skull and preserve only brain tissues. The inter-class variance-based slice selection method is discussed, which aims to select one/several distinguishing slice(s). Spatial normalization is necessary, as it can transform a brain image to match a template. Rigid and non-rigid normalization methods are introduced. The intensity of normalization can improve image compatibility and facilitate comparability of scans with different settings. Finally, image enhancement is introduced, which can help improve the visual quality of magnetic brain images. Histogram equalization and contrast-limited adaptive histogram equalization methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keegan J, Gatehouse PD, Taylor AM, Yang GZ, Jhooti P, Firmin DN (1999) Coronary artery imaging in a 0.5-Tesla scanner: Implementation of real-time, navigator echo-controlled segmented k-space FLASH and interleaved-spiral sequences. Magn Reson Med 41(2):392–399

    Article  Google Scholar 

  2. Zhu YC, Gao S, Cheng LQ, Bao SL (2013) Review: K-space trajectory development. In: International conference on medical imaging physics and engineering (ICMIPE), Shenyang, P.R. China. IEEE, New York, pp 356–360

    Google Scholar 

  3. Peterson BS (2014) Energy preserved sampling for compressed sensing MRI. Comput Math Methods Med, Article ID: 546814. https://doi.org/10.1155/2014/546814

  4. Dabek J, Zevenhoven KCJ, Nieminen JO, Vesanen PT, Sepponen R, Ilmoniemi RJ (2012) Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA IEEE Engineering in Medicine and Biology Society conference proceedings. IEEE, New York, pp 1093–1097

    Google Scholar 

  5. Wittevrongel B, Van Hulle MM (2016) Frequency- and phase encoded SSVEP using spatiotemporal beamforming. PLoS ONE 11(8), Article ID: e0159988. https://doi.org/10.1371/journal.pone.0159988

  6. Wang S, Ji G, Dong Z, Zhang Y (2014) An improved quality guided phase unwrapping method and its applications to MRI. Progress Electromagn Res 145:273–286

    Article  Google Scholar 

  7. Ruiz-Antolin D, Segura J (2016) A new type of sharp bounds for ratios of modified Bessel functions. J Math Anal Appl 443(2):1232–1246. https://doi.org/10.1016/j.jmaa.2016.06.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Iftikhar MA, Jalil A, Rathore S, Hussain M (2014) Robust brain MRI denoising and segmentation using enhanced non-local means algorithm. Int J Imaging Syst Technol 24(1):52–66

    Article  Google Scholar 

  9. Phophalia A, Rajwade A, Mitra SK (2014) Rough set based image denoising for brain MR images. Sig Process 103:24–35. https://doi.org/10.1016/j.sigpro.2014.01.029

    Article  Google Scholar 

  10. Yang J, Fan JF, Ai DN, Zhou SJ, Tang SY, Wang YT (2015) Brain MR image denoising for Rician noise using pre-smooth non-local means filter. Biomed Eng Online 14, Article ID: 2. https://doi.org/10.1186/1475-925x-14-2

  11. Phophalia A, Mitra SK (2015) Rough set based bilateral filter design for denoising brain MR images. Appl Soft Comput 33:1–14. https://doi.org/10.1016/j.asoc.2015.04.005

    Article  Google Scholar 

  12. Akar SA (2016) Determination of optimal parameters for bilateral filter in brain MR image denoising. Appl Soft Comput 43:87–96. https://doi.org/10.1016/j.asoc.2016.02.043

    Article  Google Scholar 

  13. Kalavathi P, Prasath VBS (2016) Methods on skull stripping of MRI head scan images—a review. J Digit Imaging 29(3):365–379. https://doi.org/10.1007/s10278-015-9847-8

    Article  Google Scholar 

  14. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

    Article  Google Scholar 

  15. Roura E, Oliver A, Cabezas M, Vilanova JC, Rovira A, Ramio-Torrenta L, Llado X (2014) MARGA: Multispectral Adaptive Region Growing Algorithm for brain extraction on axial MRI. Comput Methods Programs Biomed 113(2):655–673. https://doi.org/10.1016/j.cmpb.2013.11.015

    Article  Google Scholar 

  16. Moldovanu S, Moraru L, Biswas A (2015) Robust skull-stripping segmentation based on irrational mask for magnetic resonance brain images. J Digit Imaging 28(6):738–747. https://doi.org/10.1007/s10278-015-9776-6

    Article  Google Scholar 

  17. Alansary A, Ismail M, Soliman A, Khalifa F, Nitzken M, Elnakib A, Mostapha M, Black A, Stinebruner K, Casanova MF, Zurada JM, El-Baz A (2016) Infant brain extraction in T1-weighted MR images using BET and refinement using LCDG and MGRF models. IEEE J Biomed Health Inf 20(3):925–935. https://doi.org/10.1109/jbhi.2015.2415477

    Article  Google Scholar 

  18. Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. Neuroimage 129:460–469. https://doi.org/10.1016/j.neuroimage.2016.01.024

    Article  Google Scholar 

  19. Mirsadraee S, Tse M, Kershaw L, Semple S, Schembri N, Chin C, Murchison JT, Hirani N, van Beek EJR (2016) T1 characteristics of interstitial pulmonary fibrosis on 3T MRI: a predictor of early interstitial change? Quant Imaging Med Surgery 6(1):42–49. https://doi.org/10.3978/j.issn.2223-4292.2016.02.02

    Article  Google Scholar 

  20. Middione MJ, Thompson RB, Ennis DB (2014) Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors. Magn Reson Med 71(6):2014–2023. https://doi.org/10.1002/mrm.24861

    Article  Google Scholar 

  21. Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9, Article ID: 66. https://doi.org/10.3389/fncom.2015.00066

  22. Wang S-H (2016) Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-4222-4

  23. Buchholz HG, Pfeifer P, Miederer M, Fehr C, Schreckenberger M (2015) Impact of different strategies on spatial normalization of F-18-fallypride: head-to-head comparison of MRI-based and PET-based methods. J Nucl Med 56(3):1–11

    Google Scholar 

  24. Kronfeld A, Buchholz HG, Maus S, Reuss S, Muller-Forell W, Lutz B, Schreckenberger M, Miederer I (2015) Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains. Med Phys 42(12):6875–6884. https://doi.org/10.1118/1.4934825

    Article  Google Scholar 

  25. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841. https://doi.org/10.1006/nimg.2002.1132

    Article  Google Scholar 

  26. Rosario BL, Ziolko SK, Weissfeld LA, Price JC (2008) Assessment of parameter settings for SPM5 spatial normalization of structural MRI data: application to type 2 diabetes. Neuroimage 41(2):363–370. https://doi.org/10.1016/j.neuroimage.2008.02.004

    Article  Google Scholar 

  27. Lancaster JL, Cykowski MD, McKay DR, Kochunov PV, Fox PT, Rogers W, Toga AW, Zilles K, Amunts K, Mazziotta J (2010) Anatomical global spatial normalization. Neuroinformatics 8(3):171–182. https://doi.org/10.1007/s12021-010-9074-x

    Article  Google Scholar 

  28. Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012) Age-specific CT and MRI templates for spatial normalization. Neuroimage 61(4):957–965. https://doi.org/10.1016/j.neuroimage.2012.03.020

    Article  Google Scholar 

  29. Li XF, Yao L, Ye Q, Zhao XJ (2014) Online spatial normalization for real-time fMRI. PLoS ONE 9 (7), Article ID: e103302. https://doi.org/10.1371/journal.pone.0103302

  30. Weiss M, Alkemade A, Keuken MC, Muller-Axt C, Geyer S, Turner R, Forstmann BU (2015) Spatial normalization of ultrahigh resolution 7 T magnetic resonance imaging data of the postmortem human subthalamic nucleus: a multistage approach. Brain Struct Funct 220(3):1695–1703. https://doi.org/10.1007/s00429-014-0754-4

    Article  Google Scholar 

  31. Zhan T (2016) Pathological brain detection by artificial intelligence in magnetic resonance imaging scanning. Progress Electromagn Res 156:105–133

    Article  Google Scholar 

  32. Abbott DF, Pell GS, Pardoe H, Jackson GD (2009) Voxel-Based Iterative Sensitivity (VBIS) analysis: MEthods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis. Neuroimage 44(3):812–819. https://doi.org/10.1016/j.neuroimage.2008.09.055

    Article  Google Scholar 

  33. Brahim A, Gorriz JM, Ramirez J, Khedher L (2015) Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach. Appl Soft Comput 37:234–244. https://doi.org/10.1016/j.asoc.2015.08.030

    Article  Google Scholar 

  34. Loizou GP, Pantziaris M, Pattichis CS, Seimenis I (2013) Brain MR image normalization in texture analysis of multiple sclerosis. J Biomed Graph Comput 3(1):20–30

    Google Scholar 

  35. Dong Z (2016) Simulation of digital image processing in medical applications. SIMULATION 92(9):825–826

    Article  Google Scholar 

  36. Amil FM, Rahman S, Rahman MM, Dey EK (2016) Bilateral histogram equalization for contrast enhancement. Int J Softw Innov 4(4):15–34. https://doi.org/10.4018/ijsi.2016100102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, SH., Zhang, YD., Dong, Z., Phillips, P. (2018). Image Preprocessing for Pathological Brain Detection. In: Pathological Brain Detection. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4026-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4026-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4025-2

  • Online ISBN: 978-981-10-4026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics