Skip to main content

Deep Learning for Cerebral Microbleed Identification

  • Chapter
  • First Online:
Pathological Brain Detection

Part of the book series: Brain Informatics and Health ((BIH))

  • 748 Accesses

Abstract

Cerebral microbleeds (CMBs) are the small foci of chronic blood products. CMBs are closely related to many diseases such as dementia, siderosis, ageing, etc. A data balance method is used for their identification, since CMB voxels in collected brain images are usually about 2000 times less common than non-CMB voxels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romero JR, Preis SR, Beiser AS, DeCarli C, Lee DY, Viswanathan A, Benjamin EJ, Fontes J, Au R, Pikula A, Wang J, Kase CS, Wolf PA, Irrizary MC, Seshadri S (2012) Lipoprotein phospholipase A2 and cerebral microbleeds in the framingham heart study. Stroke 43(11):3091–3094. https://doi.org/10.1161/strokeaha.112.656744

    Article  Google Scholar 

  2. Liu YY, Lv P, Jin HQ, Cui W, Niu CG, Zhao MM, Fan CH, Teng YM, Pan B, Peng Q, Luo JJ, Zheng LM, Huang YN (2016) Association between low estimated glomerular filtration rate and risk of cerebral small-vessel diseases: a meta-analysis. J Stroke Cerebrovasc Dis 25(3):710–716. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.11.016

    Article  Google Scholar 

  3. Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M, Wahlund LO (2015) Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska imaging dementia study. Am J Neuroradiol 36(4):661–666. https://doi.org/10.3174/ajnr.A4176

    Article  Google Scholar 

  4. Inoue Y, Nakajima M, Uetani H, Hirai T, Ueda M, Kitajima M, Utsunomiya D, Watanabe M, Hashimoto M, Ikeda M, Yamashita Y, Ando Y (2016) Diagnostic significance of cortical superficial siderosis for Alzheimer disease in patients with cognitive impairment. Am J Neuroradiol 37(2):223–227. https://doi.org/10.3174/ajnr.A4496

    Article  Google Scholar 

  5. Del Brutto OH, Mera RM, Ha JE, Del Brutto VJ, Castillo PR, Zambrano M, Gillman J (2016) Oily fish consumption is inversely correlated with cerebral microbleeds in community-dwelling older adults: results from the Atahualpa project. Aging Clin Exp Res 28(4):737–743. https://doi.org/10.1007/s40520-015-0473-6

    Article  Google Scholar 

  6. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager HR, Werring DJ (2009) The microbleed anatomical rating scale (MARS): reliability of a tool to map brain microbleeds. Neurology 73(21):1759–1766. https://doi.org/10.1212/WNL.0b013e3181c34a7d

    Article  Google Scholar 

  7. Banerjee G, Wahab KW, Gregoire SM, Jichi F, Charidimou A, Jager HR, Rantell K, Werring DJ (2016) Impaired renal function is related to deep and mixed, but not strictly lobar cerebral microbleeds in patients with ischaemic stroke and TIA. J Neurol 263(4):760–764. https://doi.org/10.1007/s00415-016-8040-4

    Article  Google Scholar 

  8. Peng Q, Sun W, Liu WH, Liu R, Huang YN (2016) Longitudinal relationship between chronic kidney disease and distribution of cerebral microbleeds in patients with ischemic stroke. J Neurol Sci 362:1–6. https://doi.org/10.1016/j.jns.2016.01.015

    Article  Google Scholar 

  9. Fazlollahi A, Meriaudeau F, Giancardo L, Villemagne VL, Rowe CC, Yates P, Salvado O, Bourgeat P (2015) Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging. Comput Med Imaging Graph 46:269–276. https://doi.org/10.1016/j.compmedimag.2015.10.001

    Article  Google Scholar 

  10. Seghier ML, Kolanko MA, Leff AP, Jager HR, Gregoire SM, Werring DJ (2011) Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. Plos One 6(3), Article ID: e17547. https://doi.org/10.1371/journal.pone.0017547

  11. Barnes SRS, Haacke EM, Ayaz M, Boikov AS, Kirsch W, Kido D (2011) Semiautomated detection of cerebral microbleeds in magnetic resonance images. Magn Reson Imaging 29(6):844–852. https://doi.org/10.1016/j.mri.2011.02.028

    Article  Google Scholar 

  12. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM (2013) Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. Neuroimage-Clinical 2:282–290. https://doi.org/10.1016/j.nicl.2013.01.012

    Article  Google Scholar 

  13. Kuijf HJ, de Bresser J, Geerlings MI, Conijn MMA, Viergever MA, Biessels GJ, Vincken KL (2012) Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform. Neuroimage 59(3):2266–2273. https://doi.org/10.1016/j.neuroimage.2011.09.061

  14. Charidimou A, Jager HR, Werring DJ (2012) Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Exp Gerontol 47(11):843–852. https://doi.org/10.1016/j.exger.2012.06.008

    Article  Google Scholar 

  15. Bai QK, Zhao ZG, Sui HJ, Xie XH, Chen J, Yang J, Zhang L (2013) Susceptibility-weighted imaging for cerebral microbleed detection in super-acute ischemic stroke patients treated with intravenous thrombolysis. Neurol Res 35(6):586–593. https://doi.org/10.1179/1743132813y.0000000179

    Article  Google Scholar 

  16. Roy S, Jog A, Magrath E, Butman JA, Pham DL (2015) Cerebral microbleed segmentation from susceptibility weighted images. In: Proceedings of SPIE, vol 9413, Article ID: 94131E. https://doi.org/10.1117/12.2082237

  17. Chen Y (2016) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping: A class-imbalanced susceptibility-weighted imaging data study. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4383-9

    Article  Google Scholar 

  18. Hou X-X, Chen H (2016) Sparse autoencoder based deep neural network for voxelwise detection of cerebral microbleed. In: 22nd International conference on parallel and distributed systems, Wuhan, China. IEEE, pp 34–37

    Google Scholar 

  19. Hou X-X (2017) Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4383-9

    Article  Google Scholar 

  20. Erfani SM, Rajasegarar S, Karunasekera S, Leckie C (2016) High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121–134. https://doi.org/10.1016/j.patcog.2016.03.028

    Article  Google Scholar 

  21. Chen JX (2016) The evolution of computing: AlphaGo. Comput Sci Eng 18(4):4–7

    Article  Google Scholar 

  22. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489. https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  23. Ronao CA, Cho SB (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244. https://doi.org/10.1016/j.eswa.2016.04.032

    Article  Google Scholar 

  24. Xue HY, Liu Y, Cai D, He XF (2016) Tracking people in RGBD videos using deep learning and motion clues. Neurocomputing 204:70–76. https://doi.org/10.1016/j.neucom.2015.06.112

    Article  Google Scholar 

  25. Valverde-Albacete FJ, Pelaez-Moreno C (2014) 100% Classification Accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. Plos One 9(1), Article ID: e84217. https://doi.org/10.1371/journal.pone.0084217

  26. Mehta J, Majumdar A (2017) RODEO: robust DE-aliasing autoencOder for real-time medical image reconstruction. Pattern Recogn 63:499–510. https://doi.org/10.1016/j.patcog.2016.09.022

    Article  Google Scholar 

  27. Zeng K, Yu J, Wang RX, Li CH, Tao DC (2017) Coupled deep autoencoder for single image super-resolution. IEEE Trans Cybern 47(1):27–37. https://doi.org/10.1109/tcyb.2015.2501373

    Article  Google Scholar 

  28. Saha M, Mitra P, Nanjundiah RS (2016) Autoencoder-based identification of predictors of Indian monsoon. Meteorol Atmos Phys 128(5):613–628. https://doi.org/10.1007/s00703-016-0431-7

    Article  Google Scholar 

  29. Chen H (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4554-8

    Article  Google Scholar 

  30. Hahnloser RHR, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS (2000) Correction: Digital selection and analogue amplification coexist in acortex-inspired silicon circuit. Nature 405(6789):947–951

    Article  Google Scholar 

  31. Masci J, Giusti A, Dan C, Fricout G, Schmidhuber J (2014) A fast learning algorithm for image segmentation with max-pooling convolutional networks. In: IEEE international conference on image processing, pp 2713–2717

    Google Scholar 

  32. Fernando B, Gavves E, Oramas J, Ghodrati A, Tuytelaars T (2017) Rank pooling for action recognition. IEEE Trans Pattern Anal Mach Intell 39(4):773–787. https://ieeexplore.ieee.org/document/7458903/

  33. Shi ZL, Ye YD, Wu YP (2016) Rank-based pooling for deep convolutional neural networks. Neural Netw 83:21–31. https://doi.org/10.1016/j.neunet.2016.07.003

    Article  Google Scholar 

  34. Jiang Y, Hou X, Cheng H, Du S (2017) Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling. IEEE Access 5:16576–16583. https://doi.org/10.1109/ACCESS.2017.2736558

    Article  Google Scholar 

  35. Gagnon B (2017) Cerebral microbleed detection by wavelet entropy and naive Bayes classifier. Adv Biol Sci Res 4:505–510

    Google Scholar 

  36. Johnson DM, Xiong CM, Corso JJ (2016) Semi-supervised nonlinear distance metric learning via forests of max-margin cluster hierarchies. IEEE Trans Knowl Data Eng 28(4):1035–1046. https://doi.org/10.1109/tkde.2015.2507130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, SH., Zhang, YD., Dong, Z., Phillips, P. (2018). Deep Learning for Cerebral Microbleed Identification. In: Pathological Brain Detection. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4026-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4026-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4025-2

  • Online ISBN: 978-981-10-4026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics