Fertilization 2: Polyspermic Fertilization

  • Shusei MizushimaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1001)


During fertilization in animals, a haploid egg nucleus fuses with a haploid sperm nucleus to restore the diploid genome. In most animals including mammals, echinoderms, and teleostei, the penetration of only one sperm into an egg is ensured at fertilization because the entry of two or more sperm is prevented by polyspermy block systems in these eggs. On the other hand, several animals such as birds, reptiles, and most urodele amphibians exhibit physiological polyspermy, in which the entry of several sperm into one egg is permitted. However, in these polyspermic eggs, only one sperm nucleus is involved in zygotic formation with a female nucleus, thereby avoiding syngamy with multiple sperm nuclei. In the chicken, 20–60 sperm are generally found within the egg cytoplasm at fertilization and this number is markedly higher than that of other polyspermic species; however, avian-specific events such as the degeneration and mitosis of supernumerary sperm nuclei during early embryo development allow a polyspermic egg to develop normally. This chapter describes current knowledge on polyspermy-related events in avian eggs during fertilization, and is characterized by a comparison to the fertilization modes of other vertebrates. The close relationship between sperm numbers and egg sizes, and the movement of supernumerary sperm nuclei towards the periphery of the egg cytoplasm and their degeneration are summarized. The molecular mechanisms by which polyspermy initiates egg activation to start embryo development are also discussed.


Diploid genome Polyspermy block Physiological polyspermy Supernumerary sperm Fertilization modes Sperm numbers Egg sizes Egg activation 


  1. Abbott AL, Ducibella T. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci. 2001;6:D792–806. doi: 10.2741/A643.PubMedCrossRefGoogle Scholar
  2. Abraham VC, Gupta S, Fluck RA. Ooplasmic segregation in the medaka (Oryzias latipes) egg. Biol Bull. 1993;184(2):115–24.CrossRefGoogle Scholar
  3. Amano T, Mori T, Watanabe T. Activation and development of porcine oocytes matured in vitro following injection of inositol 1,4,5-trisphosphate. Anim Reprod Sci. 2004;80(1–2):101–12. doi: 10.1016/S0378-4320(03)00115-5.PubMedCrossRefGoogle Scholar
  4. Batellier F, Couty I, Olszanska B, et al. In vitro fertilization of chicken oocytes after in vitro ovulation. Br Poult Sci. 2003;44(5):819–20. doi: 10.1080/00071660410001667014.PubMedCrossRefGoogle Scholar
  5. Birkhead TR, Sheldon BC, Fletcher F. A comparative study of sperm–egg interactions in birds. J Reprod Fertil. 1994;101(2):353–61. doi: 10.1530/jrf.0.1010353.PubMedCrossRefGoogle Scholar
  6. Bramwell RK, Marks HL, Howarth B. Quantitative determination of spermatozoa penetration of the perivitelline layer of the hen’s ovum as assessed on oviposited eggs. Poult Sci. 1995;74(11):1875–83. doi: 10.3382/ps.0741875.PubMedCrossRefGoogle Scholar
  7. Breed WG, Leigh CM. Morphological changes in the oocyte and its surrounding vestments during in vivo fertilization in the dasyurid marsupial Sminthopsis crassicaudata. J Morphol. 1990;204(2):177–96. doi: 10.1002/jmor.1052040207.PubMedCrossRefGoogle Scholar
  8. Brind S, Swann K, Carroll J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca2+ or egg activation. Dev Biol. 2000;223(2):251–65. doi: 10.1006/dbio.2000.9728.PubMedCrossRefGoogle Scholar
  9. Burkart AD, Xiong B, Baibakov B, et al. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J Cell Biol. 2012;197(1):37–44. doi: 10.1083/jcb.201112094.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Busa WB, Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985;100(4):1325–9. doi: 10.1083/jcb.100.4.1325.PubMedCrossRefGoogle Scholar
  11. Charbonneau M, Moreau M, Picheral B, et al. Fertilization of amphibian eggs: a comparison of electrical responses between anurans and urodeles. Dev Biol. 1983;98(2):304–18. doi: 10.1016/0012-1606(83)90361-5.PubMedCrossRefGoogle Scholar
  12. Coward K, Campos-Mendoza A, Larman M, et al. Teleost fish spermatozoa contain a cytosolic protein factor that induces calcium release in sea urchin egg homogenates and triggers calcium oscillations when injected into mouse oocytes. Biochem Biophys Res Commun. 2003;305(2):299–304. doi: 10.1016/S0006-291X(03)00753-8.PubMedCrossRefGoogle Scholar
  13. Coward K, Ponting CP, Chang HY, et al. Phospholipase Czeta, the trigger of egg activation in mammals, is present in a non-mammalian species. Reproduction. 2005;130(2):157–63. doi: 10.1530/rep.1.00707.PubMedCrossRefGoogle Scholar
  14. Coward K, Ponting CP, Zhang N, et al. Identification and functional analysis of an ovarian form of the egg activation factor phospholipase Czeta (PLCζ) in pufferfish. Mol Reprod Dev. 2011;78(1):48–56. doi: 10.1002/mrd.21262.PubMedCrossRefGoogle Scholar
  15. Cox LJ, Larman MG, Saunders CM, et al. Sperm phospholipase Cζ from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction. 2002;124(5):611–23. doi: 10.1530/rep.0.1240611.PubMedCrossRefGoogle Scholar
  16. Creton R, Speksnijder JE, Jaffe LF. Patterns of free calcium in zebrafish embryos. J Cell Sci. 1998;111(Pt 12):1613–22.PubMedGoogle Scholar
  17. Cross NL, Elinson RP. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev Biol. 1980;75(1):187–98. doi: 10.1016/0012-1606(80)90154-2.PubMedCrossRefGoogle Scholar
  18. Dean J, Cohen G, Kemp J, et al. Karyotype 69, XXX/47, XX, +15 in a 2 1/2 year old child. J Med Genet. 1997;34(3):246–9. doi: 10.1136/jmg.34.3.246.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Deguchi R, Osanai K. Serotonin-induced meiosis reinitiation from the first prophase and from the first metaphase in oocytes of the marine bivalve Hiatella flaccida: respective changes in intracellular Ca2+ and pH. Dev Biol. 1995;171(2):483–96. doi: 10.1006/dbio.1995.1298.PubMedCrossRefGoogle Scholar
  20. Dong JB, Tang TS, Sun FZ. Xenopus and chicken sperm contain a cytosolic soluble protein factor which can trigger calcium oscillations in mouse eggs. Biochem Biophys Res Commun. 2000;268(3):947–51. doi: 10.1006/bbrc.2000.2218.PubMedCrossRefGoogle Scholar
  21. Ducibella T, Huneau D, Angelichio E, et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol. 2002;250(2):280–91. doi: 10.1006/dbio.2002.0788.PubMedCrossRefGoogle Scholar
  22. Elinson RP. Fertilization in amphibians: the ancestry of the block to polyspermy. Int Rev Cytol. 1986;101:59–100. doi: 10.1016/S0074-7696(08)60246-6.PubMedCrossRefGoogle Scholar
  23. Emanuelsson H. Cell manipulation in the chick blastoderm up to the time of laying. Exp Cell Res. 1965;39(2):386–99. doi: 10.1016/0014-4827(65)90042-X.PubMedCrossRefGoogle Scholar
  24. Eot-Houllier G, Venoux M, Vidal-Eychenie S, et al. Plk1 regulates both ASAP localization and its role in spindle pole integrity. J Biol Chem. 2010;285(38):29556–68. doi: 10.1074/jbc.M110.144220.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eyal-Giladi H, Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. Dev Biol. 1976;49(2):321–37. doi: 10.1016/0012-1606(76)90178-0.PubMedCrossRefGoogle Scholar
  26. Fechheimer NS. Origins of heteroploidy in chicken embryos. Poult Sci. 1981;60(7):1365–71. doi: 10.3382/ps.0601365.PubMedCrossRefGoogle Scholar
  27. Fissore RA, Robl JM. Sperm, inositol trisphosphate, and thimerosal-induced intracellular Ca2+ elevations in rabbit eggs. Dev Biol. 1993;159(1):122–30. doi: 10.1006/dbio.1993.1226.PubMedCrossRefGoogle Scholar
  28. Fluck RA, Miller AL, Jaffe LF. Slow calcium waves accompany cytokinesis in medaka fish eggs. J Cell Biol. 1991;115(5):1259–65. doi: 10.1083/jcb.115.5.1259.PubMedCrossRefGoogle Scholar
  29. Fofanova KA. Morphologic data on polyspermy in chickens. Fed Proc Transl Suppl. 1965;24:239–47.PubMedGoogle Scholar
  30. Fontanilla RA, Nuccitelli R. Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Biophys J. 1998;75(4):2079–87. doi: 10.1016/S0006-3495(98)77650-7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Galeati G, Modina S, Lauria A, et al. Follicle somatic cells influence pig oocyte penetrability and cortical granule distribution. Mol Reprod Dev. 1991;29(1):40–6. doi: 10.1002/mrd.1080290107.PubMedCrossRefGoogle Scholar
  32. Galione A, McDougall A, Busa W, et al. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993;261(5119):348–52. doi: 10.1126/science.8392748.PubMedCrossRefGoogle Scholar
  33. Gardner AJ, Williams CJ, Evans JP. Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction. 2007;133(2):383–93. doi: 10.1530/REP-06-0304.PubMedCrossRefGoogle Scholar
  34. Gatenby JB, Hill JP. On an ovum of Ornithorhynchus exhibiting polar bodies and polyspermy. J Cell Sci. 1924;s2–68(270):229–38.Google Scholar
  35. Gould MC, Stephano JL. Polyspermy prevention in marine invertebrates. Microsc Res Tech. 2003;61(4):379–88. doi: 10.1002/jemt.10351.PubMedCrossRefGoogle Scholar
  36. Gurdon JB, Woodland HR. The cytoplasmic control of nuclear activity in animal development. Biol Rev Camb Philos Soc. 1968;43(2):233–67. doi: 10.1111/j.1469-185X.1968.tb00960.x.PubMedCrossRefGoogle Scholar
  37. Han YM, Wang WH, Abeydeera LR, et al. Pronuclear location before the first cell division determines ploidy of polyspermic pig embryos. Biol Reprod. 1999;61(5):1340–6. doi: 10.1095/biolreprod61.5.1340.PubMedCrossRefGoogle Scholar
  38. Harada Y, Matsumoto T, Hirahara S, et al. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev Biol. 2007;306(2):797–808. doi: 10.1016/j.ydbio.2007.04.019.PubMedCrossRefGoogle Scholar
  39. Harada Y, Kawazoe M, Eto Y, et al. The Ca2+ increase by the sperm factor in physiologically polyspermic newt fertilization: its signaling mechanism in egg cytoplasm and the species-specificity. Dev Biol. 2011;351(2):266–76. doi: 10.1016/j.ydbio.2011.01.003.PubMedCrossRefGoogle Scholar
  40. Haren L, Remy MH, Bazin I, et al. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J Cell Biol. 2006;172(4):505–15. doi: 10.1083/jcb.200510028.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Harper EH. The fertilization and early development of the pigeon’s egg. Am J Anat. 1904;3(4):349–86.CrossRefGoogle Scholar
  42. Homa ST, Swann K. A cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarizations in human oocytes. Hum Reprod. 1994;9(12):2356–61. doi: 10.1042/bj3130369.PubMedCrossRefGoogle Scholar
  43. Hrabia A, Takagi S, Ono T, et al. Fertilization and development of quail oocytes after intracytoplasmic sperm injection. Biol Reprod. 2003;69(5):1651–7. doi: 10.1095/biolreprod.103.019315.PubMedCrossRefGoogle Scholar
  44. Hughes RL, Hall LS. Early development and embryology of the platypus. Philos Trans R Soc Lond B Biol Sci. 1998;353(1372):1101–14. doi:10.1098/rstb.1998. 0269.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hurst S, Howes EA, Coadwell J, et al. Expression of a testis-specific putative actin-capping protein associated with the developing acrosome during rat spermiogenesis. Mol Reprod Dev. 1998;49(1):81–91. doi:10.1002/(SICI)1098-2795(199801)49:1<81::AID-MRD9>3.0.CO;2-K.PubMedCrossRefGoogle Scholar
  46. Igusa Y, Miyazaki S, Yamashita N. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J Physiol. 1983;340:633–47. doi: 10.1113/jphysiol.1983.sp014784.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ito M, Shikano T, Oda S, et al. Difference in Ca2+ oscillation-inducing activity and nuclear translocation ability of PLCZ1, an egg-activating sperm factor candidate, between mouse, rat, human, and medaka fish. Biol Reprod. 2008;78(6):1081–90. doi: 10.1095/biolreprod.108.067801.PubMedCrossRefGoogle Scholar
  48. Iwamatsu T, Ohta T. Electron microscopic observation on sperm penetration and pronuclear formation in the fish egg. J Exp Zool. 1978;205(2):157–80. doi: 10.1002/jez.1402050202.PubMedCrossRefGoogle Scholar
  49. Iwao Y. An electrically mediated block to polyspermy in the primitive urodele Hynobius nebulosus and phylogenetic comparison with other amphibians. Dev Biol. 1989;134(2):438–45. doi: 10.1016/0012-1606(89)90116-4.PubMedCrossRefGoogle Scholar
  50. Iwao Y. Fertilization in amphibians. In: Tarin JJ, Cano A, editors. Fertilization in Protozoa and Metazoan Animal. Berlin: Springer; 2000. p. 147–91.CrossRefGoogle Scholar
  51. Iwao Y. Egg activation in physiological polyspermy. Reproduction. 2012;144(1):11–22. doi: 10.1530/REP-12-0104.PubMedCrossRefGoogle Scholar
  52. Iwao Y, Elinson RP. Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF. Dev Biol. 1990;142(2):301–12. doi: 10.1016/0012-1606(90)90351-I.PubMedCrossRefGoogle Scholar
  53. Iwao Y, Jaffe LA. Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev Biol. 1989;134(2):446–51. doi: 10.1016/0012-1606(89)90117-6.PubMedCrossRefGoogle Scholar
  54. Iwao Y, Yamasaki H, Katagiri C. Experiments pertaining to the suppression of accessory sperm in fertilized newt eggs. Dev Growth Differ. 1985;27(3):323–31. doi:10.1111/j.1440-169X.1985. 00323.x.CrossRefGoogle Scholar
  55. Iwao Y, Sakamoto N, Takahara K, et al. The egg nucleus regulates the behavior of sperm nuclei as well as cycling of MPF in physiologically polyspermic newt eggs. Dev Biol. 1993;160(1):15–27. doi: 10.1006/dbio.1993.1282.PubMedCrossRefGoogle Scholar
  56. Iwao Y, Murakawa T, Yamaguchi J, et al. Localization of γ-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Dev Growth Differ. 2002;44(6):489–99. doi: 10.1046/j.1440-169X.2002.00661.x.PubMedCrossRefGoogle Scholar
  57. Jaffe LA, Gould M. Polyspermy-preventing mechanisms. In: Metz CB, Monroy A, editors. Biology of fertilization: the fertilization response of the egg. Orlando: Academic Press; 1985. p. 223–50.CrossRefGoogle Scholar
  58. Jaffe LA, Sharp AP, Wolf DP. Absence of an electrical polyspermy block in the mouse. Dev Biol. 1983;96(2):317–23. doi: 10.1016/0012-1606(83)90168-9.PubMedCrossRefGoogle Scholar
  59. Jones KT. Ca2+ oscillations in the activation of the egg and development of the embryo in mammals. Int J Dev Biol. 1998;42(1):1–10.PubMedGoogle Scholar
  60. Jones KT. Mammalian egg activation: from Ca2+spiking to cell cycle progression. Reproduction. 2005;130(6):813–23. doi: 10.1530/rep.1.00710.PubMedCrossRefGoogle Scholar
  61. Jones KT. Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol. 2007;34(10):1084–9. doi: 10.1111/j.1440-1681.2007.04726.x.PubMedCrossRefGoogle Scholar
  62. Jones KT, Carroll J, Merriman JA, et al. Repetitive sperm-induced Ca2+ transients in mouse oocytes are cell cycle dependent. Development. 1995;121(10):3259–66.PubMedGoogle Scholar
  63. Kang KS, Park TS, Rengaraj D, et al. Fertilization of cryopreserved sperm and unfertilized quail ovum by intracytoplasmic sperm injection. Reprod Fertil Dev. 2016;28(12):1974–1981. doi: 10.1071/RD15126.
  64. Keating TJ, Cork RJ, Robinson KR. Intracellular free calcium oscillations in normal and cleavage-blocked embryos and artificially activated eggs of Xenopus laevis. J Cell Sci. 1994;107(Pt 8):2229–37.PubMedGoogle Scholar
  65. Kobayashi W, Baba Y, Shimozawa T, et al. The fertilization potential provides a fast block to polyspermy in lamprey eggs. Dev Biol. 1994;161(2):552–62. doi: 10.1006/dbio.1994.1053.PubMedCrossRefGoogle Scholar
  66. Kouchi Z, Fukami K, Shikano T, et al. Recombinant phospholipase Cζ has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem. 2004;279(11):10408–12. doi:10.1074/jbc.M313 801200.PubMedCrossRefGoogle Scholar
  67. Kuroda K, Ito M, Shikano T, et al. The role of X/Y linker region and N-terminal EF-hand domain in nuclear translocation and Ca2+ oscillation-inducing activities of phospholipase Czeta, a mammalian egg-activating factor. J Biol Chem. 2006;281(38):27794–805. doi: 10.1074/jbc.M603473200.PubMedCrossRefGoogle Scholar
  68. Larman MG, Saunders CM, Carroll J, et al. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ. J Cell Sci. 2004;117(Pt 12):2513–21. doi: 10.1242/jcs.01109.PubMedCrossRefGoogle Scholar
  69. Lawrence Y, Ozil JP, Swann K. The effects of a Ca2+ chelator and heavy-metal-ion chelators upon Ca2+ oscillations and activation at fertilization in mouse eggs suggest a role for repetitive Ca2+ increases. Biochem J. 1998;335(Pt 2):335–42. doi: 10.1042/bj3350335.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lee HC, Aarhus R, Walseth TF. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 1993;261(5119):352–5. doi: 10.1126/science.8392749.PubMedCrossRefGoogle Scholar
  71. Lee B, Yoon SY, Malcuit C, et al. Inositol 1,4,5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+]i oscillations. J Cell Physiol. 2010;222(1):238–47. doi: 10.1002/jcp.21945.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Leikin YN, Zharova TV, Tjulina OV. Novel oxaloacetate effect on mitochondrial Ca2+ movement. FEBS Lett. 1993;331(1–2):35–7. doi: 10.1016/0014-5793(93)80292-3.PubMedCrossRefGoogle Scholar
  73. Liu M. The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol. 2011;9:149. doi: 10.1186/1477-7827-9-149.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mahbub Hasan AK, Hashimoto A, Maekasa Y, et al. The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus Laevis. Development. 2014a;141(8):1705–14. doi: 10.1242/dev.105510.PubMedCrossRefGoogle Scholar
  75. Mahbub Hasan AK, Sato K, Sakakibara K, et al. Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol. 2005;286(2):483–92. doi: 10.1016/j.ydbio.2005.08.020.PubMedCrossRefGoogle Scholar
  76. Mahbub Hasan AK, Hashimoto A, Maekasa Y, et al. The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus Laevis. Development. 2014b;141(8):1705–14. doi: 10.1242/dev.105510.PubMedCrossRefGoogle Scholar
  77. Malcuit C, Knott JG, He C, et al. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs. Biol Reprod. 2005;73(1):2–13. doi: 10.1095/biolreprod.104.037333.PubMedCrossRefGoogle Scholar
  78. Marangos P, FitzHarris G, Carroll J. Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development. 2003;130(7):1461–72. doi: 10.1242/dev.00340.PubMedCrossRefGoogle Scholar
  79. McAvey BA, Wortzman GB, Williams CJ, et al. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol Reprod. 2002;67(4):1342–52. doi: 10.1095/biolreprod.102.004630.PubMedCrossRefGoogle Scholar
  80. McCulloh DH, Rexroad CE Jr, Levitan H. Insemination of rabbit eggs is associated with slow depolarization and repetitive diphasic membrane potentials. Dev Biol. 1983;95(2):372–7. doi: 10.1016/0012-1606(83)90038-6.PubMedCrossRefGoogle Scholar
  81. Mehlmann LM, Carpenter G, Rhee SG, et al. SH2 domain-mediated activation of phospholipase Cγ is not required to initiate Ca2+ release at fertilization of mouse eggs. Dev Biol. 1998;203(1):221–32. doi: 10.1006/dbio.1998.9051.PubMedCrossRefGoogle Scholar
  82. Missiaen L, Parys JB, Smedt HD, et al. Effect of adenine nucleotides on myo-inositol-1, 4, 5-trisphosphate-induced calcium release. Biochem J. 1997;325(Pt 3):661–6. doi: 10.1042/bj3250661.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Miyagawa Y, Tanaka H, Iguchi N, et al. Molecular cloning and characterization of the human orthologue of male germ cell-specific actin capping protein alpha3 (CPalpha3). Mol Hum Reprod. 2002;8(6):531–93. doi: 10.1093/molehr/8.6.531.PubMedCrossRefGoogle Scholar
  84. Miyazaki S. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. J Cell Biol. 1988;106(2):345–53.PubMedCrossRefGoogle Scholar
  85. Miyazaki S. Thirty years of calcium signals at fertilization. Semin Cell Dev Biol. 2006;17(2):233–43. doi: 10.1016/j.semcdb.2006.02.007.PubMedCrossRefGoogle Scholar
  86. Miyazaki S, Igusa Y. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature. 1981;290(5808):702–4. doi: 10.1038/290702a0.PubMedCrossRefGoogle Scholar
  87. Miyazaki S, Yuzaki M, Nakada K, et al. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science. 1992;257(5067):251–5. doi: 10.1126/science.1321497.PubMedCrossRefGoogle Scholar
  88. Miyazaki S, Shirakawa H, Nakada K, et al. Essential role of the inositol 1,4,5,-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol. 1993;158(1):62–78. doi: 10.1006/dbio.1993.1168.PubMedCrossRefGoogle Scholar
  89. Mizushima S. Establishment of intracytoplasmic sperm injection technique in Japanese quail and its possible application for poultry resources and transgenic birds. J Poult Sci. 2012;49(4):225–30. doi: 10.2141/jpsa.0120042.CrossRefGoogle Scholar
  90. Mizushima S, Takagi S, Ono T, et al. Possible role of calcium on oocyte development after intracytoplasmic sperm injection in quail (Coturnix japonica). J Exp Zool A Ecol Genet Physiol. 2007;307(11):647–53. doi: 10.1002/jez.a.418.PubMedCrossRefGoogle Scholar
  91. Mizushima S, Takagi S, Ono T, et al. Developmental enhancement of intracytoplasmic sperm injection (ICSI)-generated quail embryos by phospholipase Cζ cRNA. J Poult Sci. 2008;45(2):152–8. doi: 10.2141/jpsa.45.152.CrossRefGoogle Scholar
  92. Mizushima S, Takagi S, Ono T, et al. Phospholipase Cζ mRNA expression and its potency during spermatogenesis for activation of quail oocytes a sperm factor. Mol Reprod Dev. 2009;76(12):1200–7. doi: 10.1002/mrd.21097.PubMedCrossRefGoogle Scholar
  93. Mizushima S, Takagi S, Ono T, et al. Novel method of gene transfer in birds: intracytoplasmic sperm injection for green fluorescent protein expression in quail blastoderms. Biol Reprod. 2010;83(6):965–9. doi: 10.1095/biolreprod.110.085860.PubMedCrossRefGoogle Scholar
  94. Mizushima S, Hiyama G, Shiba K, et al. The birth of quail chicks after intracytoplasmic sperm injection. Development. 2014;141(19):3799–806. doi: 10.1242/dev.111765.PubMedCrossRefGoogle Scholar
  95. Moore GD, Kopf GS, Schultz RM. Complete mouse egg activation in the absence of sperm by stimulation of an exogenous G protein-coupled receptor. Dev Biol. 1993;159(2):669–78. doi: 10.1006/dbio.1993.1273.PubMedCrossRefGoogle Scholar
  96. Mori M, Yamashita M, Yoshikuni M, et al. Maturation-promoting factor and p34cdc2 kinase during oocyte maturation of the Japanese quail. Dev Biol. 1991;146(1):246–9. doi: 10.1016/0012-1606(91)90465-F.PubMedCrossRefGoogle Scholar
  97. Morito Y, Terada Y, Nakamura S, et al. Dynamics of microtubules and positioning of female pronucleus during bovine parthenogenesis. Biol Reprod. 2005;73(5):935–41. doi: 10.1095/​biolreprod.105.042366.PubMedCrossRefGoogle Scholar
  98. Nagai K, Ishida T, Hashimoto T, et al. The sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis. Dev Growth Differ. 2009;51(5):499–510. doi: 10.1111/j.1440-169X.2009.01112.x.PubMedCrossRefGoogle Scholar
  99. Nakada K, Mizuno J, Shiraishi K, et al. Initiation, persistence, and cessation of the series of intracellular Ca2+ responses during fertilization of bovine eggs. J Reprod Dev. 1995;41(1):77–84. doi: 10.1262/jrd.41.77.CrossRefGoogle Scholar
  100. Nakanishi A, Utsumi K, Iritani A. Early nuclear events of in vitro fertilization in the domestic fowl (Gallus domesticus). Mol Reprod Dev. 1990;26(3):217–21. doi: 10.1002/mrd.1080260304.PubMedCrossRefGoogle Scholar
  101. Nuccitelli R. The fertilization potential is not necessary for the block to polyspermy or the activation of development in the medaka egg. Dev Biol. 1980;76(2):499–504. doi:10.1016/0012-1606(80) 90397-8.PubMedCrossRefGoogle Scholar
  102. Nuccitelli R, Kline D, Busa WB, et al. A highly localized activation current yet widespread intracellular calcium increase in the egg of the frog, Discoglossus pictus. Dev Biol. 1988;130(1):120–32. doi: 10.1016/0012-1606(88)90419-8.PubMedCrossRefGoogle Scholar
  103. Okamura F, Nishiyama H. Penetration of spermatozoa into the ovum and transformation of the sperm nucleus into the male pronucleus in the domestic fowl, Gallus gallus. Cell Tissue Res. 1978;190(1):89–98. doi: 10.1007/BF00210039.PubMedCrossRefGoogle Scholar
  104. Olszanska B, Stepinska U, Perry MM. Development of embryos from in vitro ovulated and fertilized oocytes of the quail (Coturnix coturnix japonica). J Exp Zool. 2002;292(6):580–6. doi: 10.1002/jez.10096.PubMedCrossRefGoogle Scholar
  105. Olszanska B, Stepinska U. Molecular aspects of avian oogenesis and fertilisation. The Int J Dev Bio. 2008;52(2-3):187–194.Google Scholar
  106. Ozil JP. Role of calcium oscillations in mammalian egg activation: experimental approach. Biophys Chem. 1998;72(1-2):141–52. doi: 10.1016/S0301-4622(98)00130-6.PubMedCrossRefGoogle Scholar
  107. Parrington J, Lai FA, Swann K. The soluble mammalian sperm factor protein that triggers Ca2+ oscillations in eggs: Evidence for expression of mRNA(s) coding for sperm factor protein(s) in spermatogenetic cells. Biol Cell. 2000;92(3-4):267–75. doi: 10.1016/S0248-4900(00)01064-9.PubMedCrossRefGoogle Scholar
  108. Patterson JT. Studies on the early development of the hen’s egg. I History of the early cleavage and of the accessory cleavage. J Morphol. 1910;21(1):101–34.CrossRefGoogle Scholar
  109. Payne C, Rawe V, Ramalho-Santos J, et al. Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization. J Cell Sci. 2003;116(Pt 23):4727–38. doi: 10.1242/jcs.00784.PubMedCrossRefGoogle Scholar
  110. Perry MM. Nuclear events from fertilization to the early cleavage stages in the domestic fowl (Gallus domesticus). J Anat. 1987;150:99–109.PubMedPubMedCentralGoogle Scholar
  111. Perry AC, Wakayama T, Yanagimachi R. A novel trans-complementation assay suggests full mammalian oocyte activation is coordinately initiated by multiple, submembrane sperm components. Biol Reprod. 1999;60(3):747–55. doi: 10.1095/biolreprod60.3.747.PubMedCrossRefGoogle Scholar
  112. Perry AC, Wakayama T, Cooke IM. Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis. Dev Biol. 2000;217(2):386–93. doi: 10.1006/dbio.1999.9552.PubMedCrossRefGoogle Scholar
  113. Quesada V, Sanchez LM, Alvarez J, et al. Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J Biol Chem. 2004;279(25):26627–34. doi: 10.1074/jbc.M401588200.PubMedCrossRefGoogle Scholar
  114. Rabbani MG, Sasanami T, Mori M, et al. Sperm–egg interaction is mediated by a sperm-associated body in quail. Dev Growth Differ. 2006;48(1):33–40. doi: 10.1111/j.1440-169X.2006.00842.x.PubMedCrossRefGoogle Scholar
  115. Rabbani MG, Sasanami T, Mori M, et al. Characterization of the sperm-associated body and its role in the fertilization of the chicken Gallus domestics. Dev Growth Differ. 2007;49(1):39–48. doi: 10.1111/j.1440-169X.2007.00903.x.PubMedCrossRefGoogle Scholar
  116. Reinsch S, Karsenti E. Movement of nuclei along microtubules in Xenopus egg extracts. Curr Biol. 1997;7(3):211–4. doi: 10.1016/S0960-9822(97)70092-7.PubMedCrossRefGoogle Scholar
  117. Rens W, O’Brien PC, Grutzner F, et al. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 2007;8(11):R243. doi: 10.1186/gb-2007-8-11-r243.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ridgway EB, Gilkey JC, Jaffe LF. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977;74(2):623–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Roberts HE, Saxe DF, Muralidharan K, et al. Unique mosaicism of tetraploidy and trisomy 8: clinical, cytogenetic, and molecular findings in a live-born infant. Am J Med Genet. 1996;62(3):243–6. doi:10.1002/(SICI)1096-8628(19960329)62:3<243::AID-AJMG8>3.0.CO;2-U.PubMedCrossRefGoogle Scholar
  121. Ross PJ, Beyhan Z, Iager AE, et al. Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC Dev Biol. 2008;8:16. doi: 10.1186/1471-213X-8-16.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rugh R. The frog. Its reproduction and Development. Yale J Biol Med. 1951;23(5):441–2.Google Scholar
  123. Runft LL, Jaffe LA, Mehlmann LM. Egg activation at fertilization: where it all begins. Dev Biol. 2002;245(2):237–54. doi: 10.1006/dbio.2002.0600.PubMedCrossRefGoogle Scholar
  124. Sakakibara K, Sato K, Yoshino K, et al. Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J Biol Chem. 2005;280(15):15029–37. doi: 10.1074/jbc.M410538200.PubMedCrossRefGoogle Scholar
  125. Sakamoto I, Takahara K, Yamashita M, et al. Changes in cyclin B during oocyte maturation and early embryonic cell cycle in the newt, Cynops pyrrhogaster: requirement of germinal vesicle for MPF activation. Dev Biol. 1998;195(1):60–9. doi: 10.1006/dbio.1997.8835.PubMedCrossRefGoogle Scholar
  126. Sato K, Iwao Y, Fujimura T, et al. Evidence for the involvement of a Src-related tyrosine kinase in Xenopus egg activation. Dev Biol. 1999;209(2):308–20. doi: 10.1006/dbio.1999.9255.PubMedCrossRefGoogle Scholar
  127. Sato K, Tokmakov AA, Iwasaki T, et al. Tyrosine kinase-dependent activation of phospholipase Cγ is required for calcium transient in Xenopus egg fertilization. Dev Biol. 2000;224(2):453–69. doi: 10.1006/dbio.2000.9782.PubMedCrossRefGoogle Scholar
  128. Sato K, Ogawa K, Tokmakov AA, et al. Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs. Dev Growth Differ. 2001;43(1):55–72. doi: 10.1046/j.1440-169x.2001.00554.x.PubMedCrossRefGoogle Scholar
  129. Sato K, Tokmakov AA, He CL, et al. Reconstitution of Src- dependent phospholipase Cγ phosphorylation and transient calcium release by using membrane rafts and cell-free extracts from Xenopus eggs. J Biol Chem. 2003;278(40):38413–20. doi: 10.1074/jbc.M302617200.PubMedCrossRefGoogle Scholar
  130. Sato K, Wakai T, Seita Y, et al. Molecular characteristics of horse phospholipase Czeta (PLCζ). Anim Sci J. 2013;84(4):359–68. doi: 10.1111/asj.12044.PubMedCrossRefGoogle Scholar
  131. Saunders CM, Larman MG, Parrington J, et al. PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development. 2002;129(15):3533–44.PubMedGoogle Scholar
  132. Sette C, Paronetto MP, Barchi M, et al. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21(20):5386–95. doi: 10.1093/emboj/cdf553.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sherard J, Bean C, Bove B, et al. Long survival in a 69XXY triploid male. Am J Med Genet. 1986;25(2):307–12. doi: 10.1002/ajmg.1320250216.PubMedCrossRefGoogle Scholar
  134. Shimada K, Ono T, Mizushima S. Application of intracytoplasmic sperm injection (ICSI) for fertilization and development in birds. Gen Comp Endocrinol. 2014;196:100–5. doi: 10.1016/j.ygcen.2013.11.001.PubMedCrossRefGoogle Scholar
  135. Shiono H, Azumi J, Fujiwara M, et al. Tetraploidy in a 15-month old girl. Am J Med Genet. 1988;29(3):543–7. doi: 10.1002/ajmg.1320290311.PubMedCrossRefGoogle Scholar
  136. Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction. 2011;142(6):779–92. doi: 10.1530/REP-11-0255.PubMedCrossRefGoogle Scholar
  137. Srere PA. The molecular physiology of citrate. Curr Top Cell Regul. 1992;33:261–75.PubMedCrossRefGoogle Scholar
  138. Stepinska U, Olszanska B. Detection of deoxyribonuclease I and II activities in Japanese quail oocytes. Zygote. 2001;9(1):1–7. doi: 10.1017/S0967199401001010.CrossRefGoogle Scholar
  139. Stepinska U, Olszanska B. DNase I and II present in avian oocytes: a possible involvement in sperm degradation at polyspermic fertilisation. Zygote. 2003;11(1):35–42. doi: 10.1017/S0967199403001059.PubMedCrossRefGoogle Scholar
  140. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol. 1999;211(2):157–76. doi: 10.1006/dbio.1999.9340.PubMedCrossRefGoogle Scholar
  141. Sultana F, Mao KM, Yoshizaki N. Possible involvement of a sperm-associated body in the process of fertilization in quail. Zoolog Sci. 2004;21(8):851–8. doi: 10.2108/zsj.21.851.PubMedCrossRefGoogle Scholar
  142. Sun QY. Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech. 2003;61(4):342–8. doi: 10.1002/jemt.10347.PubMedCrossRefGoogle Scholar
  143. Sun QY, Nagai T. Molecular mechanism underlying pig oocyte maturation and fertilization. J Reprod Dev. 2003;49(5):347–59. doi: 10.1262/jrd.49.347.PubMedCrossRefGoogle Scholar
  144. Swann K. Soluble sperm factors and Ca2+ release in eggs at fertilization. Rev Reprod. 1996;1(1):33–9. doi: 10.1530/ror.0.0010033.PubMedCrossRefGoogle Scholar
  145. Swann K, Ozil JP. Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol. 1994;152:183–222.PubMedCrossRefGoogle Scholar
  146. Takagi S, Ono T, Tsukada A, et al. Fertilization and blastoderm development of quail oocytes after intracytoplasmic injection of chicken sperm bearing the W chromosome. Poult Sci. 2007a;86(5):937–43. doi: 10.1093/ps/86.5.937.PubMedCrossRefGoogle Scholar
  147. Takagi S, Tsukada A, Saito N, et al. Fertilizing ability of chicken sperm bearing the W chromosome. Poult Sci. 2007b;86(4):731–8. doi: 10.1093/ps/86.4.731.PubMedCrossRefGoogle Scholar
  148. Talevi R. Polyspermic eggs in the anuran Discoglossus pictus develop normally. Development. 1989;105:343–9.Google Scholar
  149. Tang TS, Dong JB, Huang XY, et al. Ca(2+) Oscillations induced by a cytosolic sperm protein factor are mediated by a maternal machinery that functions only once in mammalian eggs. Development. 2000;127(5):1141–50.PubMedGoogle Scholar
  150. Tatone C, Iorio R, Francione A, et al. Biochemical and biological effects of KN-93, an inhibitor of calmodulin-dependent protein kinase II, on the initial events of mouse egg activation induced by ethanol. J Reprod Fertil. 1999;115(1):151–7. doi: 10.1530/jrf.0.1150151.PubMedCrossRefGoogle Scholar
  151. Uchida IA, Freeman VC. Triploidy and chromosomes. Am J Obstet Gynecol. 1985;151(1):65–9. doi: 10.1016/0002-9378(85)90426-0.PubMedCrossRefGoogle Scholar
  152. Ueno T, Ohgami T, Harada Y, et al. Egg activation in physiologically polyspermic newt eggs: involvement of IP3 receptor, PLCγ, and microtubules in calcium wave induction. Int J Dev Biol. 2014;58(5):315–23. doi: 10.1387/ijdb.130333yi.PubMedCrossRefGoogle Scholar
  153. Van Krey HP, Ogasawara FX, Lorenz FW. Distribution of spermatozoa in the oviduct and fertility in domestic birds IV. Fertility of spermatozoa from infundibular and uteroviginal glands. J Reprod Fertil. 1966;11(2):257–62. doi: 10.1530/jrf.0.0110257.PubMedCrossRefGoogle Scholar
  154. Waddington D, Gribbin C, Sterling RJ, et al. Chronology of events in the first cell cycle of the polyspermic egg of the domestic fowl (Gallus domesticus). Int J Dev Biol. 1998;42(4):625–8.PubMedGoogle Scholar
  155. Waitzman JS, Rice SE. Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biol Cell. 2014;106(1):1–12. doi: 10.1111/boc.201300054.PubMedCrossRefGoogle Scholar
  156. Wang WH, Machaty Z, Ruddock N, et al. Activation of porcine oocytes with calcium ionophore: effects of extracellular calcium. Mol Reprod Dev. 1999;53(1):99–107. doi:10.1002/(SICI)1098-2795(199905)53:1<99::AID-MRD12>3.0.CO;2-G.PubMedCrossRefGoogle Scholar
  157. Warren WC, Hillier LW, Marshall Graves JA, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453(7192):175–83. doi: 10.1038/nature06936.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wassarman PM. Gamete interactions during mammalian fertilization. Theriogenology. 1994;41(1):31–44. doi: 10.1016/S0093-691X(05)80046-9.CrossRefGoogle Scholar
  159. Williams CJ, Mehlmann LM, Jaffe LA, et al. Evidence that Gq family G proteins do not function in mouse egg activation at fertilization. Dev Biol. 1998;198(1):116–27. doi: 10.1006/dbio.1998.8892.PubMedGoogle Scholar
  160. Wishart GJ. Quantitative aspects of sperm: egg interaction in chickens and turkeys. Anim Reprod Sci. 1997;48(1):81–92. doi: 10.1016/S0378-4320(97)00042-0.PubMedCrossRefGoogle Scholar
  161. Wong JL, Wessel GM. Defending the zygote: search for the ancestral animal block to polyspermy. Curr Top Dev Biol. 2006;72:1–151. doi: 10.1016/S0070-2153(05)72001-9.PubMedGoogle Scholar
  162. Wu H, He CL, Fissore RA. Injection of a porcine sperm factor triggers calcium oscillations in mouse oocyte and bovine eggs. Mol Reprod Dev. 1997;46(2):176–89. doi:10.1002/(SICI)1098-2795(199702)46:2<176::AID-MRD8>3.0.CO;2-N.PubMedCrossRefGoogle Scholar
  163. Wu H, He CL, Jehn B, et al. Partial characterization of the calcium-releasing activity of porcine sperm cytosolic extracts. Dev Biol. 1998;203(2):369–81. doi: 10.1006/dbio.1998.9070.PubMedCrossRefGoogle Scholar
  164. Xia P, Wang Z, Yang Z, et al. Ultrastructural study of polyspermy during early embryo development in pigs, observed by scanning electron microscope and transmission electron microscope. Cell Tissue Res. 2001;303(2):271–5. doi: 10.1007/s004410000315.PubMedCrossRefGoogle Scholar
  165. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, editors. The physiology of reproduction. 2nd ed. New York: Raven Press; 1994. p. 189–319.Google Scholar
  166. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online. 2005;10(2):247–88. doi: 10.1016/S1472-6483(10)60947-9.PubMedCrossRefGoogle Scholar
  167. Yoda A, Oda S, Shikano T, Kouchi Z, et al. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev Biol. 2004;268(2):245–57. doi: 10.1016/j.ydbio.2003.12.028.PubMedCrossRefGoogle Scholar
  168. Yoneda A, Kashima M, Yoshida S, et al. Molecular cloning, testicular postnatal expression, and oocyte-activating potential of porcine phospholipase Cζ. Reproduction. 2006;132(3):393–401. doi: 10.1530/rep.1.01018.PubMedCrossRefGoogle Scholar
  169. Yoshimura Y, Tanaka H, Nozaki M, et al. Genomic analysis of male germ cell-specific actin capping protein alpha. Gene. 1999;237(1):193–9. doi: 10.1016/S0378-1119(99)00287-5.PubMedCrossRefGoogle Scholar
  170. Young C, Grasa P, Coward K, et al. Phospholipase C zeta undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril. 2009;91(5 Suppl):2230–42. doi: 10.1016/j.fertnstert.2008.05.021.PubMedCrossRefGoogle Scholar
  171. Zhu CC, Wojcikiewicz RJ. Ligand binding directly stimulates ubiquitination of the inositol 1,4,5-trisphosphate receptor. Biochem J. 2000;248(Pt 3):551–6. doi: 10.1042/bj3480551.CrossRefGoogle Scholar
  172. Zhu CC, Furuichi T, Mikoshiba K, et al. Inositol 1,4,5-trisphosphate receptor down-regulation is activated directly by inositol 1,4,5-trisphosphate binding. Studies with binding-defective mutant receptors. J Biol Chem. 1999;274(6):3476–84. doi: 10.1074/jbc.274.6.3476.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences, Faculty of ScienceHokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations